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ABSTRACT 

Thermal energy storage (TES) is one of the most attractive and cost effective solutions to 

the intermittent generation systems like solar, wind and other renewable sources, compared to 

alternatives. It creates a bridge between the power supply and demand during peak hours or at 

times of emergency to ensure the continuous supply of energy. Among all the TES systems, 

latent heat thermal energy storage (LHTES) draws lots of interests as it has high energy density 

and can store or retrieve energy isothermally. Two major technical challenges associated with the 

LHTES are low thermal conductivity of the phase change materials (PCMs), and corrosion 

tendency of the containment vessel with the PCMs. Macro-encapsulation of the PCM is one of 

the techniques to encounter the low thermal conductivity issue as it will maximize the heat 

transfer area for the given volume of the PCM and restrict the PCMs to get in contact with the 

containment vessel. However, finding a suitable encapsulation technique that can address the 

volumetric expansion problem and compatible shell material are significant barriers of this 

approach. 

In the present work, an innovative technique to encapsulate PCMs that melt in the 100-

350 
o
C temperature range was developed for industrial and private applications. This technique 

did not require a sacrificial layer to accommodate the volumetric expansion of the PCMs on 

melting. The encapsulation consisted of coating a non-reactive polymer over the PCM pellet 

followed by deposition of a metal layer by a novel non-vacuum metal deposition technique. The 

fabricated spherical capsules were tested in different heat transfer fluid (HTF) environments like 

air, oil and molten salt (solar salt). Thermophysical properties of the PCMs were investigated by 
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DSC/TGA, IR and weight change analysis before and after the thermal cycling. Also, the 

constrained melting and solidification of sodium nitrate PCM inside the spherical capsules of 

different sizes were compared to explore the charging and discharging time. To accomplish this, 

three thermocouples were installed vertically inside the capsule at three equidistant positions. 

Low-density graphene was dispersed in the PCM to increase its conductivity and compared with 

pure PCM capsules. 

A laboratory scale packed-bed LHTES system was designed and built to investigate the 

performance of the capsules. Sodium nitrate (m.p. 306
o
C) was used as the PCM and air was used 

as the heat transfer fluid (HTF). The storage system was operated between 286
o
C and 326

o
C and 

the volumetric flow rate of the HTF was varied from 110 m
3
/h to 151 m

3
/h. The temperature 

distribution along the bed (radially and axially) and inside the capsules was monitored 

continuously during charging and discharging of the system. The effect of the HTF mass flow 

rate on the charging and discharging time and on the pressure drop across the bed was evaluated. 

Also, the energy and exergy efficiencies were calculated for three different flow rates. 

Finally, a step-by-step trial manufacturing process was proposed to produce large number 

of spherical capsules.  
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CHAPTER 1: 

INTRODUCTION 

1.1 General Background 

A drastic change in the climate due to the emission of greenhouse gasses, growing need 

of energy and diminishing reserves of the fossil fuel inclines the mankind towards sustainable 

and clean energy resources such as solar energy. Even though it is available in abundance, its 

intermittent nature hinders the widespread implementation as a cost effective and reliable energy 

resource. Efficient energy storage is essential to overcome this problem. Out of all available 

energy storage techniques, thermal energy storage shows the greatest potential as it is a simple, 

cost effective, efficient and reliable method [1]. 

Three types of TES systems are being investigated, especially for concentrated solar 

power (CSP) plants [2]. Sensible heat thermal storage (SHTES) is the most frequently used and 

commercially available TES technology [2, 3], however, LHTES is fast emerging as a viable 

alternative to SHTES [2]. This is partly due to the fact that the LHTES has a higher energy 

storage density than the SHTES [4-6]. The high energy storage density implies a smaller storage 

tank leading to a substantial decrease in the overall cost of the storage system. One of the major 

drawbacks associated with the LHTES is the longer charging and discharging times potentially 

leading to inefficient energy retrieval from the system. The main reason for this is the low 

thermal conductivity of the PCMs [7, 8]. Various methods have been presented to increase the 

PCM thermal conductivity. Insertion of nano or expanded graphite mixture [9, 10] and metal 

particles into the PCM matrix increases the thermal conductivity of the PCM. Micro- and macro-
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encapsulation of PCMs have also been shown to improve the heat transfer rate [11-16]. Recently, 

in packed bed thermal storage systems, macroencapsulation technique has been considered as 

one of the heat storage approaches to encounter the low thermal conductivity problem of the 

PCMs [14-16]. 

1.2 Research Objective  

The main goal of the investigation is to develop a macroencapsulated spherical capsule to 

enhance the heat transfer rate of the PCM for LHTES system in a temperature range between 50 

and 350
o
C. The capsule must withstand the highly corrosive environment of molten alkali metal 

nitrate based salts and their eutectics, must exhibit good compatibility with the Heat Transfer 

Fluid (HTF), as well as have the ability to survive thermal cycles at elevated temperatures. Later, 

thermal and cyclic performances of these spherical capsules are tested in a packed-bed latent heat 

storage system. Brief descriptions of the content in the chapters are mentioned below:  

Chapter one highlights the general background of the storage system and the research 

objective of the present work. 

Chapter two presents the literature survey of the past works associated with thermal 

energy storage, heat transfer rate enhancement techniques, macroencapsulation, and melting and 

solidification inside a spherical capsule. 

Chapter three discusses about an innovative technique to spherically encapsulate PCMs. 

It does not need a sacrificial layer to accommodate the volumetric expansion of the PCM on 

melting. The spherical capsules are tested in different heat transfer fluid (HTF) environments like 

air, oil and molten salt (solar salt) and their thermophysical properties are investigated using 

DSC/TGA, IR and weight change analysis before and after thermal cycles.  
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Chapter four provides a description of the construction of a laboratory scale packed-bed 

LHTES setup with encapsulated PCM and the performance of the spherical capsules inside the 

packed-bed. Temperature profiles at various axial positions in the storage system are determined 

for three different flow rates. The pressure drop across the bed is measured and compared with 

the theoretical analysis. Also, the energy and exergy efficiencies of the system are calculated for 

three different flow rates. 

Chapter five discusses the melting and solidification of different size spherical capsules 

filled with sodium nitrate PCM. Also, 5 wt% and 7 wt% of graphene is used as the high 

conductive dispersion particle to enhance the heat transfer rate during solidification and 

compared with pure PCM capsules.  

Chapter six discusses the manufacturing process steps of the encapsulated PCM for latent 

heat storage systems.  

Finally, chapter seven summarizes the conclusions based on the experimental study and 

also suggests future recommendations for further studies in this area. 
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CHAPTER 2:  

LITERATURE SURVEY 

In this chapter, a literature survey of recent studies associated with thermal energy 

storage, storage materials, heat transfer rate enhancement techniques, macroencapsulation, 

laboratory scale latent heat packed-bed storage system with encapsulated PCMs and 

melting/solidification inside a spherical capsule are discussed. 

2.1 Thermal Energy Storage 

TES can be utilized to minimize the difference between supply and demand of the 

periodic sources of generation. Three processes are involved in a TES system: charging, storing, 

and discharging/ retrieving [17]. For instance, consider a TES system combined with a 

concentrated solar power plant. At daytime, the parabolic trough collects energy from the sun 

and transmits it through the HTF. During the charging stage, a fraction of the high temperature 

HTF is pushed through the heat exchanger of TES and heat is conveyed from the HTF to the 

storage media. During the night the discharge mode starts, and a low temperature HTF is 

pumped through the TES in the reverse direction. As it passes through the TES, it absorbs the 

thermal energy from the system.  

Zalbe et al. [18] and Fernandes et al [19] mentioned certain characteristics and 

requirements for design of an efficient TES in the literature. These are summarized as follows.  

1The content of 2.5 was published in T.E. Alam, J. Dhau, D.Y. Goswami,, E. Stefanakos, “Macroencapsulation and 

characterization of phase change materials for latent heat thermal energy storage systems,” Applied Energy. 2015, 154, 92-101. 

DOI: 10.1016/j.apenergy.2015.04.086. Permission is included in Appendix C.
 

 
2The content of 2.6 was published in TE Alam, J Dhau, D.Y. Goswami, M.M. Rahman, and E.. Stefankos. “Experimental 

Investigation of a Packed-Bed Latent Heat Thermal Storage System With Encapsulated Phase Change Material,”. In ASME 2014 

International Mechanical Engineering Congress and Exposition. (2014, November). Permission is included in Appendix C. 
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a) TES materials should have high energy density to make the TES compact in size  

b) Storage material should be mechanically and chemically compatible with the TES  

c) Maintained in suitable operating temperature range with appropriate storage medium 

d) TES should store/retrieve relatively high energy at a shorter temperature gradient 

e) Prolonged lifespan with stable performance of the system and no degradation of the 

storage capacity 

f) Easy controlling option 

g) Well insulated to minimize the heat loss and degradation in the storage capacity 

h) Cost effective system  

2.2 Categories of Thermal Energy Storage 

TES can be classified into three different categories. These are mentioned in figure 2-1 

and discussed in the following sections. 

 

Figure 2-1: Category of thermal energy storage 

 

2.2.1 Sensible Heat Storage 

The energy storage capacity of the sensible heat storage (SHS) depends on the 

temperature difference of the inlet and outlet, specific heat capacity of the storage material and 

the total mass of the storage media. [20]. This type of storage is extensively investigated and 

used commercially in the power plants [2, 3]. It is expressed by the formula 

Thermal Energy 
storage 

Sensible Heat 
storage 

Latent Heat  

Storage  

Thermochemical 
storage 
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𝑄 = ∫ 𝑚𝐶𝑝𝑑𝑇 = 𝑚𝐶𝑝(𝑇𝑓 − 𝑇𝑖)
𝑇𝑓

𝑇𝑖
     (1-1) 

Q = amount of heat (kJ) 

m = mass of storage material (kg) 

Cp = specific heat capacity (kJ/ kg
o
C)  

Ti = initial temperatures of SHS (°C) 

Tf = final temperatures of SHS (°C) 

Depending on the storage medium, the SHS is classified in solid or liquid base system 

(rock, concrete, metal, molten salt, synthetic oil and mineral oil). 

2.2.2 Latent Heat Storage 

Latent heat storage (LHS) stores energy by absorbing or releasing the latent heat of 

fusion or vaporization of the storage material at the phase change temperature. LHS can store a 

large amount of energy compared to SHS in same volume for a smaller temperature range [20]. 

It is expressed by the formula 

𝑄 = ∫ 𝑚𝐶𝑝𝑑𝑇 + 𝑚𝐿 + ∫ 𝑚𝐶𝑝𝑑𝑇
𝑇𝑓

𝑇𝑚
= 𝑚[𝐶𝑠𝑝(𝑇𝑚 − 𝑇𝑖) + 𝐿 + 𝐶𝑙𝑝(𝑇𝑓 − 𝑇𝑚)]

𝑇𝑚

𝑇𝑖
  (1-2) 

Q = amount of heat (kJ) 

m = mass of storage material (kg) 

Csp = specific heat capacity in solid state (kJ/ kg
o
C)  

Clp = specific heat capacity in liquid state (kJ/ kg
o
C)  

Tm = melting temperatures of storage material (°C) 

Ti = initial temperatures of LHS (°C) 

Tf = final temperatures of LHS (°C) 

L= latent heat of fusion (kJ/kg) 
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Due to the difficulty in handling high-pressure gases, and due to the high costs associated 

with the construction of storage systems for the liquid-vapor transition, most of the investigation 

and research has been conducted on solid- liquid transition of the material. According to Stekli et 

al. [1], LHS can be categorized into tank PCM TES and encapsulated PCM TES. 

Regin et al. [21] summarized three basic components to develop an effective LHS. These 

are presented as follows. 

a)  Low-cost suitable storage material with higher latent heat of fusion for desired 

temperature range  

b) Durable storage material containment system 

c) Larger surface area to transfer the heat from the source to the storage material and 

from storage material to the heat sink efficiently. 

2.2.3 Thermochemical Storage 

The core component of the thermochemical storage system is the reversible endothermic 

chemical reaction. To achieve the high efficiency, the reversibility of the chemical reaction needs 

to be ensured. As the heat from the heat source is brought to exhilarate the endothermic chemical 

reaction, it will absorb the heat. If the reaction is reversible, the heat can be extracted. The 

energy density of this type of storage system is higher compared to other two storage systems. 

However, this technology is still at a very premature stage to go for commercialization. 

2.3 Phase Change Material for LHTES 

Numerous researchers have conducted investigations on wide range of organic and 

inorganic PCMs. Lane et al. [20], Zalbe et al. [18], Abhat [22], Farid et al. [23] Regin [21], 

Sharma et al. [24] have summarized the characteristics of PCMs needed for efficient TES system 

design. These are presented as follows. 
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a) High latent heat of fusion, high specific heat both in solid and liquid state, and high 

energy density to reduce the size of the storage system. It should also show 

insignificant volume of expansion and low vapor pressure during the phase change 

period. 

b) A desirable melting/solidification temperature corresponding with the operating 

temperature limit. 

c) High thermal conductivity to achieve required heat transfer between the HTF and the 

storage media and insubstantial supercooling during solidification. 

d) Congruent melting to avoid segregation of the component. 

e) Chemically stable, non-toxic, non-explosive and non-corrosive to protect the 

containment vessel. 

f) Abundantly available and cheap. 

Zalbe et al. [18] presented a comparison between organic and inorganic PCMs. Organic 

materials such as waxes or paraffin, terpenes, and low molecular weight alkanes have been 

studied by many researchers [25-29] for low temperature applications (below 100
o
C). The 

problem associated with the organic PCMs, compared to inorganic PCMs, is that they have lower 

latent heat of fusion, lower thermal conductivity, and higher flammability [18]. In general, 

inorganic PCMs possess higher energy density than the organic PCMs and also have higher 

temperature utilization ranges [7]. 

Salt hydrates can be used as a potential PCM as they show higher latent heat of fusion 

[18, 24]. The main problem associated with salt hydrates is their incongruent melting and 

subcooling of the PCM during freezing. To neutralize the subcooling effect, various nucleating 

agents need to be added which leads to a rise in the overall cost of the TES system [30].  
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Organic and hydrate PCMs have high chance of oxidation and formation of PCM 

solution that can reduce the storage density. Encapsulating the PCM can solve this problem. 

In this research, inorganic PCMs and their eutectic, having temperature range of 100
o 

C 

to 400
o 

C, will be discussed as most of the Rankine cycle based solar plants (maximum 

temperature limit of synthetic oil is 400
o
C) and waste heat recovery systems use this range 

[3,7,31] of temperature. The PCMs used for the research are listed in table 2-1. 

Table 2-1: Inorganic PCM with melting point ranging from 100
o
C to 400

o
C [7, 32-34] 

Phase Change Material 

 (wt%) 

Melting Point  

(
o
C) 

Latent Heat of fusion  

(kJ/kg) 

LiNO3(30%) –NaNO3(18%)-KNO3(52%) 122 140.6, (140)* 

LiNO3(33%) –KNO3(67%) 133 170, (172)* 

LiNO3(57%) –NaNO3(43%) 193 248 

LiNO3(49%) –NaNO3(51%) 194 265, (267)* 

KNO3(54%) –NaNO3(46%) 222 100, (120)* 

LiNO3 253 373(362)* 

NaNO3 306 177, (172)* 

KNO3 335 88, (92)* 

NaCl(34.81)-KCl(32.29)-LiCl(32.90) 346 281, (130)* 

MgCl2(60)- NaCl(19.6)-KCl(20.4) 380 400, (232)* 

* Measured in CERC, University of South Florida 

Nitrate based PCM and their eutectics have considerably high latent heat of fusion at the 

same time these are chemically stable and low cost. The chloride-based eutectics in table 2-1 are 

hygroscopic. 

2.4 Heat Transfer Enhancement Techniques 

As it is mentioned earlier, low thermal conductivity is the major problem associated with 

the PCM-based LHTES. Thermal conductivity of the most PCMs falls in the 0.3-0.6 W/m.K 

range [35]. During charging of the system, melting of the PCM is faster as it is a natural 
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convection dominated process. However, heat transfer rate during solidification is low between 

the capsule and the HTF as it forms a high resistance solid layer on the inner wall of the capsule. 

As it starts creating the solid layer, conduction becomes dominant and consequently discharging 

takes a longer time. Jegadheeswaran et al. [36], Agyenim et al. [37] and Cárdenas et al. [31] 

reviewed different techniques to enhance the heat transfer rate of the PCM based LHTES system. 

The following techniques presented in figure 2-2 are adopted to elevate the heat transfer rate in 

the PCM based LHTES. 

 

Figure 2-2: Various categories to enhance the heat transfer rate in the PCM based LHTES 

Figure 2-3 summarizes various methods employed by the researchers to enhance the heat 

transfer rate [37]. 
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Figure 2-3: Various methods employed by the researchers to enhance the heat transfer rate [37] 

(permission is in Appendix C) 
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To maximize the heat transfer area in the TES fins or extended surfaces are employed. If 

the conductivity of the PCM is lower than HTF, the fin will be placed in the PCM side or vice 

versa [38]. Melting and solidification process dynamics has the influence of the configuration 

and orientation of the fin [36]. Lacroix and Benmadda [39] conducted a research on the 

horizontal fin configuration in rectangular box and concluded that instead of having a larger 

number of short fins, it is more effective to have fewer long fins in the system. Optimization of 

the number of fins depends on the wall temperature. Shatikian et al. [40] found that the 

performance of the enhancement depends upon optimization of both number of fins and 

thickness. Steinmann [41] tested aluminum fins in NaNO3 PCM for 400 hours and found that 

aluminum fins are compatible with NaNO3. Other materials like graphite foil, steel and copper 

can also be employed as the fin material. 

Porous matrices made of steel, stainless steel, aluminum, copper, and graphite can be 

impregnated in the PCM based LHTES to enhance the heat transfer rate. Mesalhy et al. [42] 

numerically investigated a horizontal cylindrical annulus structure and concluded that the 

performance of enhancement technique depends upon the pore size and the thermal conductivity 

of the material in the matrix. Recently, Fiedler et al. [43] compared aluminum and copper based 

porous matrices and found that the copper matrix had approximately 80% more effective thermal 

conductivity than the aluminum matrix. Even though melting and solidification time of the 

storage material reduces by employing the metal structures significantly, compatibility of the 

PCM and the porous structure has always been an issue. 

Multi-PCM-based LHTES refers to using a number of PCMs with various melting points 

in the storage system. Employing multiple PCMs with decreasing melting points ensures a higher 

temperature difference between the HTF and the PCM in the flow direction, which will lead to 



www.manaraa.com

13 
  

higher heat transfer performance of the system [36]. Wang et al. [44] were the first group to 

introduce a novel technique to enhance the heat transfer rate. Michels and Pitz-Paal [34] 

conducted an experimental exploration on multiple PCMs in shell and tube configuration. 

Synthetic oil was used as the HTF and allowed it to go through the tube and three PCMs were 

placed in the shell side. It was found from the experiment that single PCM storage with a higher 

melting point has a lower storage/retrieval capacity compared with a multi-PCM storage with 

three PCMs. Charging and discharging experiments were demonstrated with three different 

melting point PCMs by Farid and Kanzawa [45]. They observed an improvement of ten percent 

in the heat transfer rate. Cylindrical enclosures were used to load three different PCMs and air 

was used as HTF. In case of multi-PCM system, all the PCM started melting at the same time 

whereas for single capsules, it started at different time. Multi PCM system is one of the more 

efficient ways to improve the performance of the system by enhancing the heat transfer rate. 

However, selection of right combination of PCMs is still a challenge [31]. 

Dispersing particles in the PCM is one of the most efficient and simplest ways to enhance 

the conductivity of the PCM [31]. Hoover [46] is the pioneer of conducting research on particle 

impregnation technique to improve the thermal conductivity. Khodadadi et al. [47] conducted an 

extensive review on the enhancement of the heat transfer rate by dispersing particles in the PCM. 

Lots of materials have been employed as the particles such as metals (Ag, Cu, and Al), metal 

oxides (Al2O3, MgO, CuO and TiO2), carbon nano tubes, graphite, silver nanowires, and carbon 

based nano particles (graphene flakes) [47]. Mettawee and Assassa [48] conducted an 

experimental investigation to improve the thermal conductivity of PCM by dispersion of micro 

aluminum particles. It was found that there was a sixty percent reduction in the charging time as 

compared to pure PCM by adding the particle Zeng et al. [49] investigated the effect of silver 
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nanoparticles in 1-tetradecanol and found that silver nanoparticles did not show any strong 

reaction with 1-tetradecanol. Overall, the thermal conductivity of the PCM increased with the 

increase of silver nanoparticles. Xie et al.[50], Hong et al.[51] , Weinstein et al. [52] , Zeng et al. 

[53],  and Kim and Drzal [54] employed alumina (Al2O3), MgO, graphite nanofibers, multi-

walled carbon nanotubes, and exfoliated graphite nanoplatelets, respectively and all observed the 

enhancement of the heat transfer rate. Recently, researchers have shown great interest in 

graphene to improve the thermal conductivity of PCM [55-57]. Some important properties of 

graphene are presented in table 2-2. As most of the works have been conducted with low 

temperature PCMs, this area has much open space for future work. 

Table 2-2: Important properties of graphene for thermal conductivity improvement 

Material Thermal Conductivity 

(W·m
−1

·K
−1

) 

Specific surface area 

(m
2
·g

−1
) 

Graphene ~5000 [58] ~2630 [58] 

 

Khodadadi and Hosseinizadeh [59] reported that overall latent heat of the PCM 

composite decreased with the increasing wt% of the particles, though the thermal conductivity of 

the composite increased. Hence, optimization of the mass fraction of the particle and latent heat 

of the PCM is quite important. 

2.5 Encapsulation
1 
 

Another method to enhance the heat transfer rate is by utilizing micro- (capsule size ~1-

1000 μm) or macroencapsulated (capsule size above 1000 μm) PCMs [60]. Considerable work 

has been carried out on microencapsulation of the low melting point (50-120
o
C) inorganic salt 

hydrates and organic materials such as waxes, terpenes, low molecular weight polymers, etc [61-

66]. Compared to macroencapsulation, the microencapsulation of PCMs provides faster charging 
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and discharging rates because of the shorter distance for heat transfer. However, the lower PCM-

to-coating mass ratio (~1:1) greatly reduces the energy storage density of the storage media and 

increases the storage capital cost [20].
 
Recently, Zhang et al. [67] encapsulated NaNO3/KNO3 

PCM in AISI 321 tubular capsules. Zheng et al. [68] fabricated spherical capsules with copper as 

the PCM and chromium-nickel as the shell material. The fabricated capsules have been shown to 

withsand 1000 thermal cycles. Vincent and Silva [69] tested parafin wax in rectangular steel 

shell in horizontally hollow brick for 8 days. Zhao [70] and Zheng et al. [71] have reported an 

encapsulation technique that uses stainless steel/carbon steel as the shell material. The process 

follows a post-formed approach where cylindrical steel capsules are fabricated first and then 

filled with PCM followed by welding a cap at the top. The major challenge in this approach is 

countering the corrosion of the metal cans from the molten salt at high temperatures. Mathur et 

al. [72] have demonstrated a ceramic-based macroencapsulation technique for the sodium nitrate 

pellets (5-15 mm in diameter). The technique involves the decomposition of a sacrificial polymer 

layer to provide a void in between the coating and core PCM, which is needed for 

accommodating expansion of the PCM during the phase transition period. Some of the other 

techniques [73, 74] reported in the literature are tabulated in Table 2-3. 

Table 2-3: Macroencapsulation techniques and materials 

S. 

No 

Core 

(PCM) 

Material 

Shell 

material 

Core to 

Shell 

ratio 

Temperature 

of operation 

(
o
C) 

Geometry 

of capsules 

Average 

size of 

capsules 

Thermal 

Cycles 

 

Ref. 

1. NaNO3-

KNO3 

AISI 321 - 160-270 Cylindrical 27.3/39/7

5 mm* 

5000 [67] 

2. Copper Chromiu

m-Nickel 

4:1 1050-1150 Spherical 2 mm 1000 [68] 

3. Paraffin 

wax 

Steel - 

 

0-36 Rectangula

r 

(30×18×

2.8 cm) 

8 days [69] 

4. NaNO3, 

NaCl-

MgCl2,  

MgCl2, Al 

Stainless 

steel, 

carbon 

steel 

- 300-450/ 

300-750 

Cylindrical  60 / 

(480 h) 

[70, 

71] 
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Table 2-3 (Continued) 

S. 

No 

Core 

(PCM) 

Material 

Shell 

material 

Core 

to 

Shell 

ratio 

Temperature 

of operation 

(
o
C) 

Geometry 

of capsules 

Average 

size of 

capsules 

 

Thermal 

Cycles 

 

Ref. 

5. NaNO3, 

molten salt 

Ceramic –

metallic 

- 300-550 Spherical 5-15 mm 2500 [72] 

6. Hydrated 

salts, 

paraffin, 

fatty acids, 

bio PCM 

Polyolefin - (-64)-120 Spherical 98 mm - [73] 

7. Paraffin, 

salt hydrate 

Aluminum

, plastics 

- (-10)-100 Box, bag - - [74] 

8. NaNO3, 

KNO3, 

NaNO3-

KNO3, 

NaNO3-

KNO3-

LiNO3 

PTFE-

Nickel 

8:1/1

2:1 

120-350 Spherical 27.43 

mm 

2200 

(5133 h) 

[16] 

*same diameter and height 

2.6 Heat Transfer Study in Latent Heat Packed-Bed Storage
2 

A latent heat packed-bed storage system uses a single tank. The benefit of using this type 

of storage is the low cost of the system. As the PCM (filler material) needs to be non-reactive 

with the HTF in the packed-bed containment, it is better to encapsulate the PCM. Numerous 

studies have been conducted to analyze the overall performance of this type of storage by many 

research groups [21,75-86]. Saitoh [75] observed the effectiveness of spherical capsules over 

other geometries. Ozturk [76] used paraffin as PCM to experimentally investigate the thermal 

effect of the LHTES on greenhouse heating. Regin [21, 77] presented a review on utilizing 

organic PCM base capsules in a latent heat thermocline system and exhibited a numerical 

analysis of the system. Michel and Pitz-Paal [34] reported an experimental and numerical 

investigation of a shell and tube type cascaded LHTES system using alkali metal nitrates as 

PCMs. Recently, Esakkimuthu et al. [81] employed 75 mm spherical containers containing a low 
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temperature inorganic salt (melting point of 55
o
C) PCM in a packed-bed system integrated with a 

solar air heater. Xiao and Zhang [82] performed experiments with low temperature organic 

PCMs in cylindrical capsules and investigated the charging and discharging time, efficiency, and 

temperature profile of the PCM in a packed-bed environment. Zheng et al. [83] experimentally 

and numerically discussed the thermal energy storage using sodium nitrate (NaNO3) PCM 

contained in cylindrical steel containers (25.4 cm × 3.81 cm (h × r)). Bellan [84] worked on the 

numerical investigation of the encapsulated NaNO3 LHTES system and optimized the main 

parameters of the storage tank. Peng [85] also carried out a numerical analysis of a LHTES 

system containing sodium nitrite as the PCM, examined the temperature distribution inside the 

bed, and established the relationship of charging and discharging efficiency with the HTF flow 

rate and capsule size. Nithyanandam et al. [86] investigated the dynamic response of a 

thermocline energy storage system and provided guidelines for constructing an encapsulated 

PCM-based packed bed storage for CSP plant operation. 

2.7 Melting and Solidification in Spherical Capsules 

Melting and solidification within the spherical containers can be classified into 

constrained and unconstrained categories. In the presence of a thermocouple, the solid PCM 

clasps itself to the thermocouple and restrain it from sinking or rising inside the capsule due to 

density difference of two phases of the PCM. This is called fixed or constrained melting. On the 

other hand, in the absence of a thermocouple, direct contact melting next to the capsule wall is 

observed as the solid PCM sinks or rises up inside the capsule due to density difference of two 

phases of the PCM. This is called unconstrained or unfixed melting [87]. 

Saitoh [75] explored a thermal storage system with various geometrically shaped 

capsules filled with organic PCM and concluded that spherical capsules exhibited the best 
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storage performance. Moore and Bayazitoglu [88] conducted a numerical and experimental 

investigation with low temperature PCM in a spherical glass enclosure considering 

unconstrained melting. The numerical result had shown good agreement with the experimentally 

investigated data. Roy and Sengupta [89] conducted further study on melting in spherical 

geometry. This analysis was assumed to have constant wall temperature and high solid density 

and the analytical modeling was adopted from Bareiss and Beer’s [90] model for cylindrical 

geometries. The predicted results of the numerical solution were compared with the experimental 

data presented by Moore and Bayazitoglu [88] and showed good agreement. Bahrami and Wang 

[91] also employed the same model [90] of unconstrained melting in the spherical geometry with 

a modified assumption. Roy et al. [92] later proposed a gravity-assisted model for melting PCM 

in a sphere with an isothermal boundary condition, in which they considered the natural 

convection effect during unconstrained melting. Saitoh et al. [93] presented a numerical and 

experimental investigation of spherical capsule using n-octadecane and water considering inner 

wall temperature distribution. Fomin and Saitoh [94] considered the wall temperature of a 

spherical capsule as a sinusoidal function and developed a numerical model for the 

unconstrained melting process. The obtained results were in good agreement with a discrepancy 

not more than ±15%. Cho and Choi [95] reported an experimental investigation of paraffin and 

paraffin-water mixture as the PCM in a spherical capsule for observing the melting and 

solidification and heat transfer co-efficient. It was found that the heat transfer coefficienct of 

pure material was 40% more than the mixture. Caldwell and Chan [96] compared two different 

numerical methods, the enthalpy method and the heat balance integral method for solidification 

in the spherical containment; they found that both methods showed good agreement for higher 

Stefan numbers. Ismail and Henriquez [97] also reported a numerical solidification based model 
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of a spherical vessel with PCM.  The model was validated with available experimental results 

and found good agreement. Khodadadi and Zhang [98] developed a buoyancy driven convection 

model for constrained melting of PCM in a spherical capsule. Eames and Adref [99] conducted a 

solidification experiment with water in spherical capsules and developed an empirical relation to 

predict the solid fraction inside the capsule.  Barba and Spiga [100] compared three different 

geometries and demonstrated that solidification took the shortest time in small spherical 

capsules. Later, Ismail and Henriquez [101] conducted a parametric study on ice formation 

inside a spherical capsule to find the effects of capsule size, inlet temperature on solidification. 

Wei et al. [102] performed an experimental and numerical investigation with PCM to observe the 

solidification phenomena of various geometries. Spherical geometry shows the best performance 

with the numerical and experimental data agreeing to within 10%. Chan and Tan [103] 

conducted a solidification experiment in spherical capsules where n-hexadecane was employed 

as PCM. The observation was made for constant temperature of the surface and concluded that 

initially the solidification rate is high and uniformly concentric. With time, the solidification rate 

decreases and forms a void inside the sphere. Tan [104] reported the visual observation of fixed 

and unfixed melting inside a spherical capsule using organic PCM for different wall 

temperatures. Later, Tan et al. [105] compared the experimental findings with numerical 

simulation for fixed melting of PCM inside a sphere. It was observed that the melting time in 

experimental finding was faster than in numerical studies, which was due to thermal stratification 

of the enclosure bath water. Rizan et al. [106] conducted an experimental investigation of 

melting in a spherical container. They also employed organic PCM, and uniform heat flux 

condition was maintained on the wall boundary. The highlight of the study was the effect of 

Stefan number on the melt fraction rate. Recently, Archibold et al. [107] numerically 
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investigated the heat transfer rate during the melting of NaNO3 PCM inside a spherical capsule. 

They validated their numerical model with Tan’s [104] experimental model and found good 

agreement. Also, calculated the liquid mass fraction of NaNO3 and finally proposed a correlation 

for the liquid mass fraction, which will be helpful for designing thermal energy storage systems. 

Later, the same group proposed another numerical model for freezing in a spherical shell with 

NaNO3 as PCM; this time they included the effect of simultaneous conduction, convection and 

thermal radiation during solidification [108]. 

2.8 Scope of Research 

In this study, molten alkali metal nitrate based salts and their eutectics are selected as the 

PCM. The challenge is to fabricate encapsulated PCMs that can withstand the highly corrosive 

environment and the volumetric expansion of the PCMs on melting. The present work is 

concerned with the stability of the encapsulation material and thermophysical properties of the 

PCM before and after thermal cycling in various environments like air, thermal oil and molten 

salt. 

As is evident from the literature survey, most of the LHTES studies have either been 

carried out for low temperature encapsulated PCMs (<100
o
C) [81-82] or high temperature PCMs 

(m.p. >300
o
C) encapsulated in large metallic cylindrical containers [83]. There are a few reports 

on the numerical analysis of high temperature LHTES based on macro or microencapsulated 

spherical PCMs capsules[84-86]; however, there is no report on the experimental demonstration 

of the packed-bed LHTES system that contains high temperature encapsulated spherical PCM 

capsules (m.p. >300
o
C). As a result, this investigation focuses on constructing a packed-bed 

LHTES system with fabricated spherical capsules, and also, on evaluating the thermal 

performance of the system by measuring the temperature profile for different flow rates.  
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Lack of reports on melting and solidification of different-sized spherical capsules filled 

with high temperature PCM, points of the need for the study in this direction. In this 

investigation, different-sized complete capsules will be tested to observe the temperature profile 

and their charging discharging time. As graphene has lower density than NaNO3 PCM and has 

higher thermal conductivity, various wt% of graphene are used as the dispersion particle to 

improve the heat transfer rate and compared with pure NaNO3 capsules. 
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CHAPTER 3
1
:  

MACROENCAPSULATION OF PHASE CHANGE MATERIAL FOR LATENT HEAT 

THERMAL ENERGY STORAGE 

The present study was undertaken to fabricate encapsulated PCMs that can withstand the 

highly corrosive environment of molten alkali metal nitrate based salts and their eutectic. We 

report herein, an innovative approach to encapsulate salts and eutectics in the temperature range 

of 100-350
o
C [15,16]. The developed encapsulation technique does not require a sacrificial layer 

to accommodate the volumetric expansion of the PCMs on melting and reduces the chance of 

metal corrosion inside the capsule. 

3.1 Encapsulation of PCM 

There are three major concerns in the encapsulation of PCMs:  

a) The first concern is to accommodate a large volumetric expansion of the PCM on 

melting. 

b) The second concern is the pressure build-up due to the expansion of air as the 

temperature goes up during charging, if air is present in the capsule.  

c) The third concern is the reactivity of the molten PCM with the encapsulant materials. 

The salts used in the present study are alkali metal nitrates, which are powerful 

oxidizers, especially in the molten state. These salts are highly reactive with a variety 

of metal, organic and inorganic materials [109-113].  

 

1The content of 3.1 to 3.2 was published in T.E. Alam, J. Dhau, D.Y. Goswami,, E. Stefanakos, “Macroencapsulation and 

characterization of phase change materials for latent heat thermal energy storage systems,” Applied Energy. 2015, 154, 92-101. 

DOI: 10.1016/j.apenergy.2015.04.086. Permission is included in Appendix C. 
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Figure 3-1: PCM encapsulation model 

A selectively permeable coating that lets the hot air diffuse out but not the molten PCM 

will overcome the problem of pressure buildup due to the expansion of air on heating. Since the 

PCM solidifies from the outside-in (during the cooling process), it is postulated that an 

impervious solid layer will be formed that would prevent the air to diffuse back-in (Fig. 3-1). A 

flexible coating that can expand and contract would accommodate the large volumetric 

expansion of the PCM on melting. Therefore, a polymer coating that is both flexible and 

selectively permeable in nature was conceived to address the first concern.  

3.1.1 Material Compatibility Study 

In order to study the compatibility of the PCMs with the encapsulating material (third 

concern), a systematic study on the thermal and chemical behavior of the selected polymers with 

molten PCMs was conducted by thermal gravimetric analysis (TGA). The PCMs selected for the 

present study include sodium-, potassium- and lithium nitrate, and their eutectics. Three sets of 
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polymers; non-fluorinated, partly-fluorinated and fully-fluorinated, were selected for the present 

study (Table 3-1).  

Table 3-1: Effect of alkali metal nitrates on the thermal and chemical stability of the selected 

polymers 

Polymer 

 

Monomer 

Unit 

Onset 

decomp

. temp. 

Onset 

decomp.

b
 temp. 

with 

NaNO3 

Latent Heat (kJ/kg) Molten nitrate salts 

(Testing temperature) 

KNO3 

(92)
a 

NaNO3 

(172)
a
 

LiNO3 

(362)
a
 

KNO3  

(354
o
C) 

NaNO3  

(326
o
C) 

LiNO3  

(275
o
C) 

PIF 

 

569
o
C 467

 o
C 91 157 343 Reactive Reactive Reactive 

PI-84 

(Resin) 
 

- - 86 146 341 Reactive Reactive Reactive 

PVDF 

 

441
o
C 436

o
C 86 173 363 Reactive Reactive Non-

reactive 

FEP 

 

470
o
C 470

o
C 93 174 375 Non-

reactive 

Non-

reactive 

Non-

reactive 

PTFE 

 

534
o
C 534

o
C 92 174 368 Non-

reactive 

Non-

reactive 

Non-

reactive 

a
Values in the parentheses represent the latent heat of the as-received salts. 

b
Decomp. = Decomposition 

 

The TG analysis was performed at a ramp rate of 10
o
C/min under an inert (Argon) 

atmosphere. As evident from Fig.3-2, polyimide-film (PIF) has the highest, and PVDF the lowest 

thermal stability among the as-received polymers. However, their thermal behavior changed in 

the presence of molten sodium nitrate (NaNO3). The decomposition onset temperature of the PIF 

decreased by more than 100
o
C (Table 3-1, Fig. 3-3).  
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Figure 3-2: TGA of the selected polymers alone 

 

In addition, an abrupt weight change was noticed at 466
o
C that signals the decomposition 

of NaNO3 (onset of decomposition for the as-received NaNO3 starts at 626
o
C). There is 

practically no change in the onset decomposition temperature of PTFE and FEP. PVDF shows a 

small decrease in the onset decomposition temperature and an additional step corresponding to 

the decomposition of NaNO3 at 470
o
C. Based on these results, the thermal and chemical stability 

of the studied polymers is found to be as follows: 

PIF > PTFE > FEP > PVDF   As-received 

PTFE > FEP > PIF> PVDF   In the presence of molten NaNO3 
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Figure 3-3: TGA of the selected polymers with NaNO3 

 

The selected polymers were also subjected to the isothermal Thermogravimetric 

analysis(TGA) in order to examine the suitability of these polymers over a long duration of 

usage at a temperature of 20
o
C above the melting point of the nitrate salts (326

o
C in the case of 

NaNO3). No significant weight change was noticed for PTFE and FEP, whereas PI-84 and PVDF 

showed substantial weight loss (Figs. 3-4 and 3-5). Although no significant weight change was 

noticed in the PI-film there was substantial reduction in the latent heat value of NaNO3 (152 

kJ/g). The TGA of the polymers with KNO3 gave results similar to those polymers with NaNO3 

(Fig.3-6). 
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Figure 3-4: Isothermal TGA (4 h at 326
o
C) of as-received polymers 

 

Unlike NaNO3 and KNO3, the PI-film showed substantial weight loss in the presence of 

molten LiNO3. PI-84 showed an even more severe reaction, whereas PTFE, FEP and PVDF 

practically remained unreactive with the molten LiNO3 (Fig. 3-7). It is evident from the later 

discussion that PIF, PI-84 and PVDF are not suitable for encapsulation of the nitrate based 

PCMs. The fully fluorinated polymers, PTFE and FEP, are the best materials to encapsulate 

PCMs as they showed no sign of reaction with the molten salts. PTFE was further tested for long 

hours(1000 thermal cycles) under high temperature and found stable with 0.2% of weight loss. 
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Figure 3-5: Isothermal TGA (4 h at 326
o
C) of polymers in the presence of NaNO3 

 

3.1.2 Encapsulation Procedure 

3.1.2.1 Polymer Coating 

NaNO3 powder was pressed in a hydraulic press at 980 N of force to form hemispherical 

pellets of 12.5 to 25.5 mm diameter. This size range was chosen as optimum based on earlier 

theoretical modeling studies by Ramos-Archibold et. al. [107, 114]. The pressed pellets were 

then coated with a layer of polymer by using the jar-milling technique. The loosely held polymer 

particles were pressed in a hydraulic press at 980 N of force to form a thin polymeric film over 

the pellet. In another variation, a PTFE film was wrapped around the pellet and the whole pellet 
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was pressed in the hydraulic press to form a PTFE layer. It is desirable to have the PCM to 

polymer shell mass ratio as large as possible. However, practical fabrication of a uniform layer 

of polymer that would hold intact during cycling limited the thickness to 0.5 – 0.7 mm (Fig. 3-

8a) that gave the PCM-to-polymer mass ratio below 12:1. The coated capsules were heated to a 

temperature beyond the melting point of the PCM and then cooled to below the melting point to 

solidify the PCM.  

Figure 3-6: Isothermal TGA (4 h at 350
o
C) of polymers in the presence of KNO3 

 

As postulated (Fig. 3-1), the PCM solidifies from outside-in, therefore, the increased size 

of the capsule was maintained. As evident from Fig. 3-8b, a void zone is naturally formed within 
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the capsule when the remainder of the PCM solidifies. This void provides space for the 

expansion of the PCM when it melts again in the capsule. Two inch diameter NaNO3 capsules 

were made with 18:1 core to shell ratio using the same technique. These capsules passed 1000 

thermal cycle without failure (table 3-2). In another variation, PTFE-FEP composite material was 

used to encapsulate the NaNO3-KNO3 eutectic, whereas FEP alone was used to encapsulate the 

eutectic salts that melt below 200
o
C (Table 3-2). Thermophysical properties of the PCMs were 

measured after certain number of thermal cycles and it was found that there were no 

degradations of the properties in the PCMs. 

Figure 3-7: Isothermal TGA (4 h at 280
o
C) of polymers in the presence of LiNO3 
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.   

 

 

 

Figure 3-8: Bisected PCM capsule; a) optical microscope picture, b) showing voids created after 

thermal cycling 

 

(a) 

(b) 
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Table 3-2: Performance evaluation of encapsulated capsules 

S. 

No. 

PCM 

(M.p.) 

Polymer Metal 

coating 

PCM-to- 

coating 

mass 

ratio 

Max. 

Temp. 

(Charging 

temp.) 

Min. 

Temp. 

(Discharging 

temp.) 

No. of 

cycles 

passed 

ΔHf after 

thermal 

cycling  

(kJ/kg) 

1. NaNO3 

(306
o
C) 

PTFE Nickel 

(10-80 

μm) 

8:1 and 

12:1 

326 
o
C 250

o
C 2200

* 

170 

(172) ** 

2 NaNO3 PTFE – 12:1 326
o
C 250

o
C 1000

* 

170 

3 NaNO3 

 

PTFE – 8:1 326
o
C 250

o
C 1000

* 

170 

4 NaNO3 PTFE – 20:1 326
o
C 250

o
C 5

 
170 

5. KNO3 

(334
o
C) 

PTFE Nickel 

(50-80 

μm) 

8:1 350
o
C 280

o
C 110

* 
92 

(92) ** 

 

6. 50NaNO

3-

50KNO3 

(222
o
C) 

PTFE-

FEP 

– 12:1 242
o
C 180

o
C 1000

* 

117 

(120) ** 

7. NaNO3-

KNO3- 

LiNO3 

(122
o
C) 

FEP – 10:1 144
o
C 100

o
C

 
440

*
 140 

(140) ** 

8 NaNO3 PTFE – 18:1*** 326
o
C 250

o
C 1000

*
 

170 

*Continuing; **As-received,*** Two inch diameter capsule 

 

3.1.2.2 Metal Coating 

A thin layer of metal may be needed over the PTFE layer to maintain its structural 

integrity in a packed bed environment. For this, it is desirable to develop a process which could 

be used to metalize polymer coated capsules on a commercial scale. The use of a vacuum based 

metallization technique is practically and economically not feasible for this application. We have 

developed a fully manufacturable proprietary method to metalize polymer coated capsules by 

utilizing commercially available electroless and electroplating chemistry. The method involves  
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Figure 3-9: Contact angle measurement with DI water on a) as-received PTFE, b) Coated PTFE 

 

 

Figure 3-10: Procedure for the encapsulation of PCMs 

(a) (b) 

Left hand side angle=108.040
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coating of a PTFE layer with proprietary particles that make it hydrophilic and solvophilic in 

nature (Fig. 3-9). This is followed by deposition of a palladium catalyst that catalyzes the 

deposition of nickel. The initial electroless deposition is 1-4 micro inch, which is enough to 

make the PTFE layer conductive for the subsequent electrolytic deposition of nickel or other 

metals and metal alloys. The capsules have been electroplated with nickel, zinc, tin or zinc-

nickel/iron alloy by the rack and barrel plating technique. The barrel plating technique was 

developed for plating a large number of capsules in a single step. The average thickness of the 

plated metal was measured to be in the 10 μm to 80 μm range. Figure 3-10 depicts all the steps 

involved in the encapsulation of the PCMs. Schematic of the electroless metal deposition and 

electroplating techniques are presented in Appendix B. 

3.2 Experimental Measurements 

3.2.1 Materials  

Polytetrafluoroethylene (PTFE) films and fluorinated ethylene propylene (FEP) were 

obtained from McMASTER-CARR, USA. Sodium nitrate (NaNO3), polyvinylidene fluoride 

(PVDF) and polytetrafluoroethylene (PTFE) powder were purchased from Sigma-Aldrich, USA. 

Lithium nitrate (LiNO3) and potassium nitrate (KNO3) were obtained from Alfa Aesar, USA. 

Polyimide sheets were purchased from HD Microsystems, USA. PI-84 sample was provided by 

EVONIK, Austria. Electroless nickel solution (Mid-phosphorus, 6-10 % by weight) and Nickel 

sulfamate electroplating solution (Macdermid Inc., USA) were procured from Transene 

Company Inc.,USA, and Allied Plating, USA, respectively. 

3.2.2 Characterization  

The DSC/DTA/TGA analyses were carried out using the SDT-Q 600 by TA instrument. 

This machine can simultaneously perform differential scanning calorimetry and 
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thermogravimetric analysis. Heat flow, temperature and weight accuracy of this device are ±2% 

(based on metal melting standards), ±1
o
C (based on metal melting standards) and ±1%, 

respectively. All the TG analyzes were performed at a ramp rate of 10
o
C/min under an inert 

(Argon) atmosphere The FTIR spectra were taken by using a JASCO 6300 Fourier transform 

infrared spectroscopy (FTIR) instrument. The thickness of the dissected capsules was measured 

with a Leitz Optical Microscope (5x to 100x). Contact angles on the polymer surface were 

measured by a Ramé-hart Contact Angle Goniometer, retrofitted with a digital camera. A K-type 

thermocouple was used to measure the temperature profile at the center of the capsule and the 

temperature was recorded with the aid of Labview.  

3.2.3 Uncertainty Analysis 

TGA, weight and temperature measurements were conducted several times to observe the 

repeatability of the measured data. The Root-sum-square method was employed to evaluate the 

uncertainty of the measurements [115, 116] with a 95% confidence level.  

 Uc = √𝜎𝑟𝑎𝑛𝑑𝑜𝑚
2 + 𝜎𝑠𝑦𝑠𝑡𝑒𝑚𝑡𝑖𝑐

2  (3-1) 

Where, Uc, σrandom and σsystematic are the combined standard uncertainties for the 

measurements, random error, and systematic error, respectively. 

3.2.4 Determination of the Temperature Profile Inside the Capsule 

Before thermal cycling, we investigated the temperature distribution inside a single 

NaNO3 capsule during the charging and discharging processes. A K-type thermocouple was 

implanted at the center of the capsule (Fig. 3-11). The capsule was placed in a furnace for 

thermal cycling from 280
o
C to 326

o
C. During this procedure, the temperature inside the capsule 

was monitored with the help of LabVIEW. From Fig. 3-12, it is clear that the melting took about 

22 minnutes to complete. Further, it took about 70 minutes for the whole capsule to reach the 
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temperature of the furnace (326
o
C). Expectedly, the solidification took longer time (29 min) than 

melting as it is conduction dominant process whereas melting is convection dominant process. 

 

Figure 3-11: Schematic of the thermocouple setup inside the capsule 

 

Figure 3-12: Average temperature profile inside NaNO3 capsule thermal cycled between 280-326 
o
C 
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Figure 3-13: Average temperature profile inside KNO3-NaNO3 capsule thermal cycled between 

202-242 
o
C 

 

The experiment was performed six times to observe its repeatability. Similarly, the 

temperature distribution inside a KNO3-NaNO3 capsule was investigated between 202
o
C to 

242
o
C. Melting took 20 min, whereas solidification took 25 min for completion (Fig. 3-13). The 

uncertainties in the measurement of temperature in NaNO3 and KNO3-NaNO3 capsules are 

±1.0
o
C and ±1.65

o
C, respectively. It is pertinent to mention that the numerical analysis of the 

heat transfer process during the melting of NaNO3 in an encapsuleted spherical shell was done by 

other researchers in our group [107,114]. A mathematical correlation of the heat transfer rate and 

meltintg was developed from the numerical results [107,114]. 
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3.2.5 Thermal Performance Evaluation of PCM Capsules in Air 

Performance of the NaNO3 capsules was evaluated by thermal cycling according to the 

profile shown in Fig. 3-14. The capsules were dwelled at 326
o
C for 80 min and then cooled to 

280
o
C and then dwelled for 1 h in air inside a furnace.  

Figure 3-14: Thermal cycling profile 

 

Figures 15a and 15b show two sets of capsules after 50 cycles, one set is polymer coated 

and the other is metal coated on polymer. Figure 15c shows a set of capsules, which have 
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thicknesses were fabricated to determine the minimum polymer thickness needed to maintain the 

integrity of the film and achieve a PCM to coating ratio as high as possible. The PCM-to-coating 

mass ratio was varied from 8:1 to 20:1 (Table 3-2). The capsules with 8:1 and 12:1 PCM-to-

coating mass ratio have not shown any visible degradation in 1000 thermal cycles completed so 

far. Cycling of these capsules is continuing. The capsule with 20:1 mass ratio failed after only 

few cycles. The performance of the fabricated capsules has been tabulated in Table 3-2.  

           

 

    

 

Figure 3-15: a) Only polymer coated capsules b) Metal coated capsules tested at 326
o
C after 50 

cycles, b) Capsules tested at 326
o
C for 2200 thermal cycles 

(c) 

(a) (b) 
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Figure 3-16: DSC of NaNO3 before and after thermal cycling (>2200 cycles) 
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Table 3-2). In addition, the weight change analysis showed no substantial weight change after 

thermal cycling (Fig. 3-17). FTIR was also used to characterize the NaNO3 in the capsule before 
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All these tests indicate a compatibility of the coating material with the nitrate based salts 

over an extended period of usage. Polymer coated capsules and metal and polymer coated 

capsules were further tested in oil and molten salt environment as some of the CSP plants use oil 

or molten salt (KNO3-NaNO3). Weight change analysis, FTIR and thermophysical properties of 

the samples before and after various cycles were measured and compared with the as-received 

PCMs. To do the test in different environment two different set of capsules were made and 

further analyzed. 

 

Figure 3-17: Weight of the PCM capsules after thermal cycling (uncertainty in the weight 

measurement is ±0.006 g) 
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Figure 3-18: FTIR of as-received and thermal cycled NaNO3  
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o
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The data used for calculating amount of energy stored in a single capsule is given in 

Table 3-3. 
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Table 3-3: Physical properties of NaNO3 and PTFE used for the calculation of energy stored in a 

single capsule of one-inch diameter 

NaNO3 (PCM) PTFE (Coating) 

mpcm 17.4 g  mpoly 1.70 g 

Csp,pcm 1.655 kJ/kg.K[117] Csp,poly 1.500 kJ/kg.K [118] 

Tm,pcm 306
o
C Tf,poly 326

 o
C 

Ti,pcm 286
o
C Ti,poly 286

o
C 

Lpcm 172 kJ/kg   

Tf,pcm 326
o
C   

Clp,pcm 1.655 kJ/kg.K [117]   

 

3.2.7 Testing of a Packed-Bed System with PCM Capsules 

These capsules were also tested in a packed-bed environment for more than 50 cycles 

[118]. The packed-bed thermal storage tank contained randomly packed 770 encapsulated 

spherical NaNO3 capsules stacked one over the other. The average diameter of each capsule was 

2.743±0.038 cm. The capsule contained an average of 17.4±1.6 g of PCM [118]. The capsules 

inside the packed-bed were observed after 50 cycles. All of the capsules survived thermal 

cycling without any leakage. There were nine layers of capsules lying on the top of the bottom 

layer capsules that are approximately 12 kg of weight on the capsules at the bottom layer. This 

demonstrates the mechanical stability of the capsules both under charging and discharging 

conditions.  

3.3 Thermal Performance Evaluation of PCM Capsules in Oil 

The performance of the NaNO3 capsules was evaluated by thermal cycling according to 

the profile shown in Fig. 3-14. The capsules were dwelled at 326
o
C for 80 min and then cooled 

to 280
o
C and then dwelled for 1 h in an oil environment. Metal-polymer coated and polymer 

coated capsules (figure 3-19) were kept in a steel cylinder filled with high temperature oil 
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(specification of the HTF used in oil experiment mentioned in Appendix B). After certain 

number of cycles steel cylinder was opened to test the weight change and thermophysical 

properties of the capsules.  

 

Figure 3-19: a) Polymer-coated capsules at zero cycle b) Steel cylinder filled with oil for thermal 

cycling c) Metal and polymer coated capsules after 1000 cycle d) Polymer coated capsules after 

1000 thermal cycle 

 

At various stages of thermal cycling, capsules were dissected to analyze their 

thermophysical properties. Each time, capsules were throughly cleaned with xylene and acetone. 
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DSC analysis of the thermally cycled capsules of NaNO3 showed no significant change in their 

thermophysical properties (Table 3-4).  

Table 3-4: DSC analysis results of spherical capsules in oil environment 

Thermal 

cycle 

Melting point 

(
o
C) 

Latent heat of Fusion 

(kJ/kg) 

0 303.22 170.8±1.4 

500 303.88 169.3±1.3 

1000 303.95 169.9±1.8 

 

In addition, the weight change analysis showed no substantial weight change after 

thermal cycling (Fig. 3-20).  

 
Figure 3-20: Weight measurement after various thermal cycles (in oil) 
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FTIR was also used to characterize NaNO3 before and after thermal cycling. The IR 

spectra of “as-received” and thermal cycled (after 1000 thermal cycles, Fig. 3-21) perfectly 

matched with each other. All polymer coated capsules successfully passed 1000 thermal cycles 

with out any degradation in weight and thermophysical properties. The only problem was 

observed with zinc-polymer, nickel-tin alloy-polymer coated capsules. It showed some crack on 

the metal coating and some of the metal flakes come out of the capsule but polymer coating was 

intact. All these tests indicate a perfect compatibility of the coating material with the nitrate 

based salts over a long period of usage in oil environment. 

 
 

Figure 3-21: FTIR of as-received and thermal cycled NaNO3 after 1000 thermal cycling in oil 
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3.4 Thermal Performance Evaluation of PCM Capsules in Molten Salt 

The performance of the NaNO3 capsules was evaluated by thermal cycling according to 

the profile shown in Fig. 3-14. The capsules were dwelled at 326
o
C for 80 min and then cooled 

to 280
o
C and then dwelled for 1 h in molten salt environment. Some polymer-coated capsules 

were immersed in NaNO3- KNO3 (melting point 222
o
C) molten salt bath (figure 3-22).  

 

Figure 3-22: a) Polymer-coated capsules at zero cycle b) Beaker filled with molten salt and 

capsule for thermal cycling c) cross-section of polymer coated capsules after 1000 cycle d) 

Polymer coated capsules after 1000 thermal cycle 
 

 

At various stages of thermal cycling, capsules were dissected to analyze their 

thermophysical properties. DSC analysis of the thermal cycled capsules of NaNO3 showed no 
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significant change in their thermophysical properties (Table 3-5). In addition, the weight change 

analysis showed no substantial weight change after thermal cycling (Fig. 3-23).  

Table 3-5: DSC analysis results of spherical capsules in molten salt environment 

Thermal 

cycle 

Melting point 

(
o
C) 

Latent heat of Fusion 

(kJ/kg) 

0 303.22 170.8±1.4 

500 303.66 170.2±1.3 

1000 303.35 170.3±1.5 

 

 
Figure 3-23: Weight measurement after various thermal cycles (in molten salt) 
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FTIR was also used to characterize the NaNO3 in the capsule before and after thermal 

cycling. The IR spectra of “as-received” and thermal cycled (after 1000 thermal cycles, Fig. 3-

24). These capsules successfully passed 1000 thermal cycles without any degradation in weight 

and thermophysical properties. 

 

Figure 3-24: FTIR of as-received and thermal cycled NaNO3 after 1000 thermal cycling in 

molten salt 
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CHAPTER 4
2
:  

EXPERIMENTAL INVESTIGATION OF A PACKED- BED LHTES WITH 

ENCAPSULATED PCM 

The present work addresses the design and testing of laboratory-scale prototype packed-

bed LHTES storage system that contains encapsulated PCMs. Since alkali metal-based nitrate 

salts and their eutectics have been widely studied as PCM candidates, in this study we used 

NaNO3 as the PCM. NaNO3 has a melting point of 306
o
C and a heat of fusion of 176 kJ/kg [7]. 

Temperature profiles at various axial positions in the storage system were determined for three 

different flow rates using air as the HTF. Influence of the HTF flow rate on the system charging 

and discharging times as well as the pressure drop across the bed is discussed. Also the energy 

and exergy efficiencies of the system are calculated for three different flow rates. 

4.1 Experimental Setup and Preparation of Spherical Capsules 

4.1.1 Materials 

The polytetrafluoroethylene (PTFE) films and sodium nitrate (NaNO3) were purchased 

from McMaster-Carr, USA and Sigma-Aldrich,USA, respectively. The K-type thermocouples 

and temperature controller system were procured from Omega,USA. The cylindrical storage tank 

and diffuser cones were obtained from Florida Structural Steel, USA. Data acquisition system 

was procured from National Instrument, USA. The heating elements were purchased from 

Farnam custom products, USA. 

 

The content of 4.1 to 4.5 was published in TE Alam, J Dhau, D.Y. Goswami, M.M. Rahman, and E.. Stefankos. “Experimental 

Investigation of a Packed-Bed Latent Heat Thermal Storage System With Encapsulated Phase Change Material,”. In ASME 2014 

International Mechanical Engineering Congress and Exposition. (2014, November). Permission is included in Appendix C. 
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4.1.2 Encapsulation of Sodium Nitrate Capsules 

NaNO3 powder (8-12 g) was pressed in a hydraulic press at 980 N of force to form 

hemispherical pellets of 12.5 to 25.5 mm diameter. The salt pellets were wrapped in a thin 

stretchable PTFE film. The PTFE coated pellets were again pressed in the hydraulic press at 980 

N of force. These capsules were then heated to 326°C and annealed for an hour [15,16]. The 

PTFE coated capsules used in the packed bed are shown in Fig. 4-1.  

  
Figure 4-1: PTFE coated capsules 

 

4.1.3 Experimental Setup 

In the present work, a latent heat storage packed-bed was constructed to experimentally 

determine the charging and discharging characteristics of the system. Figure 4-2 represents the 

schematic diagram of the setup. It consists of a blower, a cylindrical storage tank, electrical 

heaters and a flow-measuring device (Pitot tube). The operating temperature range of the system 
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was 286
o
C-326

o
C (20

o
C above and below the melting point of NaNO3) and air was used as the 

HTF. During charging, air at the desired charging temperature (326
o
C) was supplied at the top of 

the storage system and extracted from the bottom, with the flow direction of air (at 286
o
C) 

reversed during the discharging process. The storage tank is made up of carbon steel and is 25.4 

cm in height and diameter. 

 
Figure 4-2: Schematic diagram of the experimental packed-bed storage system setup. 

 

The whole structure is supported by a steel frame, and the system is well insulated with 

thermal insulation of 15.2 cm thickness. The packed-bed is randomly packed with 770 

encapsulated spherical NaNO3 capsules, which were fabricated in the lab. The average diameter 

and volume of each capsule are 2.743±0.038 cm and 10.39±0.21 cm
3
, respectively. The capsule 

contained an average weight of 17.4±1.6 g PCM. Approximately 47% of the total volume of the 

tank is occupied by the PCM. The average porosity of the bed and bed-to-particle diameter was 
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fixed at 0.35 and 10, respectively. Table 4-1 represents the main characteristics and design 

parameters for the packed-bed thermal energy storage system. 

Table 4-1: Characteristics of the packed-bed 

Description Nominal value 

Bed height 0.254 meter 

Bed diameter 0.254 meter 

Tank material Carbon steel 

Total volume of packed bed 0.01287 m
3
 

Bed porosity 0.35 

PCM(NaNO3) Melting point 306
o
C 

PCM(NaNO3) density @below melting 2.26 gm/cm
3
 

PCM(NaNO3) density @above melting 1.90 gm/cm
3
 

PCM(NaNO3)  heat capacity 1.655 kJ/kg.K 

PCM(NaNO3)  latent heat of fusion 170 kJ/kg 

Wall insulation thickness 0.1524 m 

Flexible insulation density 128.1 kg/m
3
 (8 lb/ft

3
) 

Flexible insulation k-factor 0.10W/mK @ 427
o
C 

Rigid insulation density 304.4 kg/m
3
/(19 lb/ft

3
) 

Rigid insulation k-factor 0.1225W/mK @ 600 
o
C 

Outer wall material Aluminum sheet 

 

The inlet and outlet temperatures of the HTF were measured by two thermocouples (K-

type). One thermocouple was installed 2.54 cm above the top of the bed to measure the inlet 

(charging) temperature of the bed. Another thermocouple was installed at 2.54 cm below the 

bottom of the bed to measure the temperature of the air leaving the bed. A total of 24 K-type 



www.manaraa.com

54 
  

thermocouples were used inside the bed and two thermocouples (K- type) were used at the exit 

point of each of the two heaters. Figure 4-3 shows the distribution of the thermocouples inside 

the bed. These thermocouples were installed along the axial and radial directions in the bed.  

 
Figure 4-3: Positions of thermocouples inside the packed bed. 

 

Axially, thermocouples were installed 5.08 cm apart from each other and were divided 

into four rows across the length of the bed starting from the top. In the radial direction, these 

thermocouples were placed at 2.54, 7.62, 12.7, 17.78, and 22.86 cm from the left side of the 

cylindrical wall. Thermocouples were also placed inside some of the centrally placed capsules 

5.08 cm apart from each other. After insulating the bed, the exterior of the packed-bed was 

covered with aluminum sheets.  

Figure 4-4 shows the complete experimental setup of the packed-bed. Table 4-2 specifies 

the packed-bed materials. A centrifugal blower was used to produce the air flow in the system 

and six heaters were used to maintain the desired temperature inside the bed. During charging, 

the blower was placed on the top section of the setup in front of the heater. Air heated to 326
o
C 

passes through the duct connecting the heater with the packed-bed and enters the bed at specific 

flow rates. 

m

m
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Figure 4-4: Complete experimental setup for testing of the packed bed 

 

During the discharging period, the blower was placed at the bottom of the system in front 

of the discharging heater. In this position, air was heated to 286
o
C as it passed through the 

bottom heater. Air at 286
o
C enters the storage bed, absorbing thermal energy from the bed before 

leaving the system. The flow rate of the blower was controlled by a variable voltage supply 

controller. The output voltage of the inlet thermocouple was fed to the heater in order to maintain 

the desired temperature. Temperature data were collected by Labview Express at one minute 

intervals.  

Table 4-2: Experimental components 

Experiment Items Type 

Heater element 6 Custom made heater. Product No-(DH6-6 KW-240-3 0112) 

Data acquisition 1 National Instruments cDAQ 9178 
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Table 4-2: (Continued) 

Experiment Items Type 

Heater 

temperature 

controller 

1 Omega series: CN9121A. 2 wire RTD input, relay output and pulse 

output. Accuracy- ± 0.25% FS ±1 
o 
C. Auto calibration every five 

seconds. Control stability-± 0.15% FS 

Thermocouple 

(inside the 

PCM) 

4 Omega, serial #KTSS-18E-12. K-Type. Accuracy is greater of 2.2 

o
C or 0.75% above 0 

o
C 

Thermocouple  22 Omega, serial# XCIB-K-5-6-3. K-Type. Accuracy is greater of 2.2 

o
C or 0.75% above 0 

o
C 

16-channel TC 

input module 

2 National Instruments-9213 

Data 

Acquisition 

software 

1 LabView Express 

Blower 1 Dayton Blower, Model-1TDP5 Horse Power: 1/30; volts: 115V 

Hz: 50/60, RMP: 2700/2880 CFM: 131 @free air 60 Hz 

Pitot tube 1 Omega, High Accuracy Pitot Tubes FPT-6140 series. ±2% rate of 

accuracy from 21 to 204°C and 0 to 150 psig 

Digital 

Manometer 

1 Dwyer, Series 475 Mark III Handheld Ranges from 1” w.c. to 150 

psid, ±0.5% F.S., 60 to 78°F; ±1.5% F.S. from 32 to 60°F and 78 

to 104°F Resolution of  0.001 inch w.c.  

 

4.1.4 Experimental Procedure 

Before charging, the air-blower was connected to the top side of the packed-bed system. 

The whole system was heated to 286
o
C and maintained at this temperature. During charging, the 

inlet temperature of the HTF was increased to 326
o
C. Charging was complete when the whole 

TES system reached 326
o
C. During discharging, the HTF entered the packed-bed at 286

o
C. The 

discharging period was considered complete when the system temperature decreased from 326
o
C 



www.manaraa.com

57 
  

to 286
o
C. Testing of the system was carried out at three different flow rates (Table 4-3). The 

temperature distribution in the capsules and across the bed and the pressure drop across the 

system were measured at different flow rates. 

Table 4-3: Different cases for charging and discharging 

Case Flow rate 

(m
3
/h) 

Charging temperature (
o 
C) 

Bed initially 

at 286
o
C 

Discharging temperature (
o 
C) 

Bed initially 

 at 326
o
C 

1 110 326 286 

2 131 326 286 

3 151 326 286 

 

4.1.5 Uncertainty Analysis  

The Root-sum-square method was employed to evaluate the uncertainty of the 

measurements [115,116]. Experiments were carried out several times to observe the repeatability 

of the measured data and showed small deviation, the maximum uncertainty being 2.19%. The 

accuracy of the Pitot tube was ±2.0% of full scale. The digital manometer had an accuracy of 

±0.5% of full scale with a resolution of 0.001 inch water column. Based on the equipment error 

and experimental values, the uncertainty in the flow rate was 5.78%. The maximum error 

associated with the pressure drop measurement across the bed was 1.14%. The thermophysical 

properties of NaNO
3 were measured using the SDT Q 600 by TA instrument which had an 

accuracy of 6.0%. The equation used to calculate the uncertainty is  

Uc =√(𝜎𝑟𝑎𝑛𝑑𝑜𝑚)2 + (𝜎𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐)2        (4-1) 

where, Uc, σrandom and σsystematic are the combined standard uncertainties for the 

measurements, random error and systematic error, respectively. 

 



www.manaraa.com

58 
  

4.2 Results and Discussion 

4.2.1 Temperature Profile Inside the Capsules at Different Locations in the Packed-Bed  

The temperature distribution of the PCM capsules during charging and discharging of the 

LHTS has three segments. Segment one is the sensible heat absorption zone by the solid PCMs 

from the hot HTF. Segment two is the latent heat absorption zone at constant temperature, and 

finally the third segment is the sensible heat absorption by the liquid PCM. Figures 4-5, 4-6 and 

4-7 show the temperature profiles inside the capsules placed at different heights (5.8, 10.16, 

15.24, and 20.32 cm) from the top at flow rates of 151, 131 and 110 m
3
/h, respectively. It was 

observed that the top portion of the system charged up faster than the lower part. On the other 

hand, during discharging (flow from the bottom) the bottom part of the system released heat 

faster than the top section of the bed. The time required for charging the system was less than the 

time required for discharging. Melting of the PCM is faster because it is a natural convection 

dominated process. However, during solidification, the heat transfer rate between the capsule and 

the HTF is low as it forms a high resistance solid layer in the inside shell of the capsule. 

Solidification is conduction-dominated process, which is slower. Figures 4-8, 4-9 and 4-10 

provide the average temperature profiles of the HTF at different positions in the storage system 

during charging and discharging cycles with flow rates of 151,131 and 110 m
3
/h, respectively. It 

is evident that the top section of the capsules heats up quickly. During the discharging process, 

the reverse situation was observed. A typical phase change scenario is clearly evident in the 

figures. The temperature rise in each layer becomes very slow during the phase change process 

i.e. during melting of the PCM. After the completion of the melting/solidification process, the 

temperature of each row increases/decreases sharply.  
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Figure 4-5: Temperature profile inside the capsule during the charging/discharging cycle (flow 

rate:151 m
3
/h) 

 
Figure 4-6: Temperature profile inside the capsule during the charging/discharging cycle (flow 

rate: 131 m
3
/h) 
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Figure 4-7: Temperature profile inside the capsule during the charging/discharging cycle (flow 

rate: 110 m
3
/h) 

 
Figure 4-8: Average temperature profile for different rows during the charging/discharging cycle 

(flow rate: 151 m
3
/h) 
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Figure 4-9: Average temperature profile for different rows during the charging/discharging cycle 

(flow rate: 131 m
3
/h) 

 
Figure 4-10: Average temperature profile for different rows during the charging/discharging 

cycle (flow rate: 110 m
3
/h) 
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When the whole system is charged, the temperature gradient in each row diminishes. It 

was also observed from the experiment that when the volumetric flow rate increased from 110 to 

131 m
3
/h, the charging time reduced from 198 minutes to 180 minutes, which was approximately 

9% improvement in the charging time. On the other hand, when the flow rate of HTF was 

changed from 131 to 151m
3
/h, the charging time reduced from 180 to 169 minutes, 

approximately 6% improvement in the charging time. In the case of discharging, when the flow 

rate was changed from 110 to 131 m
3
/h and 131 to 151 m

3
/h, the discharge time reduce from 222 

to 204 minutes and 204 to 198 minutes, respectively. The improvement of discharging time was 

approximately 8% and 3% for the aforementioned cases, respectively. 

4.2.2 Influence of the HTF Flow Rate 

The effect of the HTF flow rate on the thermal performance of the storage system was 

also investigated. Figure 4-11 shows a comparison of the temperature profiles of the capsules in 

rows 1 and 2 for three different flow rates during the charging process. It clearly shows that an 

increase in the flow rate of the HTF enhances the rate of the PCM melting process. This is 

because an increase in the flow rate allows the quick renewal of the HTF around the capsules 

resulting in the maintenance of a constant and enhanced temperature gradient between the HTF 

and the PCM. This leads to an increase in the overall heat transfer rate between the HTF and the 

PCM. Figure 4-12 shows the effect of the HTF flow rate on the charging time at various heights 

of the bed. The charging time is the time required for the PCM to reach the inlet HTF 

temperature at the considered height. It is evident from Figure 4-12 that the top of the bed 

charges faster than the bottom of the bed for all flow rates. Also, at a given bed height, the 

charging time decreases with an increase in the HTF flow rate. Higher mass flow rate leads to a 

shorter time interval for charging and discharging. 
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Figure 4-11: Comparison of the rows 1 and 2 temperature profiles for different flow rates during 

the charging process (inside the capsule) 

 
Figure 4-12: Charging time for the encapsulated LHTS system at different heights of the bed 

(uncertainty of the charging time is ±16.45 min). 
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4.2.3 Pressure Drop Across the Bed 

The pressure drop across the bed is measured by a digital manometer. The pressure drop 

is measured and documented for three different flow rates (see Table 4-4). It is observed that the 

pressure drop increases with an increase in the mass flow rate. Experimental data in Table 4-4 

indicates that the measured Reynolds numbers are greater than 1000. For Rep >1,000, Burke-

Plummer’s equation predicts the pressure drop more accurately. According to Bird et al [120], 

the equation for determining the pressure drop is  

ΔP  
1.75𝜌𝑈2(1−𝜖)𝑙

𝐷𝑝𝜖3    (4-2) 

 
Figure 4-13: Comparison of experimental and predicted values of the pressure drop across the 

bed. 

Figure 4-13 shows the experimentally measured pressure drop across the packed bed for 

three different flow rates and theoretically predicted values based on Equation (4-2). It is 
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1-6% higher than the predicted value and for a higher flow rate, the pressure drop is 

approximately 6% lower than the predicted value. Higher flow rates produce larger overall 

pressure drops across the bed. 

Table 4-4: Pressure drop across the bed for different flow rates 

Flow rate (m
3
/h) Superficial Velocity (m/s) Rep=

𝜌𝑈𝐷𝑝

𝜇  
ΔP (Pa) 

110 0.603 1033 107 

131 0.718 1230 141 

151 0.827 1417 176 

 

4.2.4 Energy and Exergy Efficiencies 

Performance of the LHTES can be analyzed by energy efficiency (first law of 

thermodynamics) and exergy efficiency (second law of thermodynamics). In this work, both of 

the parameters are calculated and presented in table 4-5 and figure 4-14. The physical properties 

of air are determined based on the bulk mean temperature [121]. 

𝑇 =
𝑇𝑓+𝑇𝑖

2
  (4-3) 

Overall first law efficiency of the storage system is the ratio of net energy recovered 

during discharging over the net energy supplied during charging [121]. 

𝜂 =
𝐸𝐷𝑐ℎ

𝐸𝐶ℎ
 (4-4) 

where, 𝐸𝐷𝑐ℎ and 𝐸𝐶ℎ are calculated from the following equations. 

𝐸𝐷𝑐ℎ = �̇�𝐻𝑇𝐹𝐶𝑝,𝐻𝑇𝐹(𝑇𝐻𝑇𝐹,𝑜𝑢𝑡 − 𝑇𝐻𝑇𝐹,𝑖𝑛)𝑑𝜏 (4-5) 

𝐸𝐶ℎ = �̇�𝐻𝑇𝐹𝐶𝑝,𝐻𝑇𝐹(𝑇𝐻𝑇𝐹,𝑖𝑛 − 𝑇𝐻𝑇𝐹,𝑜𝑢𝑡)𝑑𝜏 (4-6) 

Exergy efficiency of the storage system for a complete charging and discharging cycle is 

the ratio of net exergy recovered to the net exergy supplied [121]. 
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𝜂𝐼𝐼 =
𝐸𝑥𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑,𝐻𝑇𝐹,𝑛𝑒𝑡

𝐸𝑥𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑,𝐻𝑇𝐹,𝑛𝑒𝑡
 (4-7) 

where, 𝐸𝑥𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑,𝐻𝑇𝐹,𝑛𝑒𝑡 and 𝐸𝑥𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑,𝐻𝑇𝐹,𝑛𝑒𝑡 was calculated from the following equations.  

𝐸𝑥𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑,𝐻𝑇𝐹,𝑛𝑒𝑡 = ∫ [�̇�𝐻𝑇𝐹𝐶𝑝,𝐻𝑇𝐹 (𝑇𝐻𝑇𝐹,𝑜𝑢𝑡 − 𝑇𝐻𝑇𝐹,𝑖𝑛 − 𝑇𝑜ln (
𝑇𝐻𝑇𝐹,𝑜𝑢𝑡

𝑇𝐻𝑇𝐹,𝑖𝑛
))] 

𝑡𝑓,𝐷𝑐ℎ

𝑡𝑖,𝐷𝑐ℎ
𝑑𝑡 (4-8) 

𝐸𝑥𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑,𝐻𝑇𝐹,𝑛𝑒𝑡 = ∫ [�̇�𝐻𝑇𝐹𝐶𝑝,𝐻𝑇𝐹 (𝑇𝐻𝑇𝐹,𝑖𝑛 − 𝑇𝐻𝑇𝐹,𝑜𝑢𝑡 − 𝑇𝑜ln (
𝑇𝐻𝑇𝐹,𝑖𝑛

𝑇𝐻𝑇𝐹,𝑜𝑢𝑡
))] 

𝑡𝑓,𝐶ℎ

𝑡𝑖,𝐶ℎ
𝑑𝑡 (4-9) 

 

Figure 4-14: Energy and exergy efficiency for different flow rates 

 

50

55

60

65

70

75

80

85

90

95

100

50

55

60

65

70

75

80

85

90

95

100

100 110 120 130 140 150 160

η
II
(%

)

η
(%

)

Flow rate (m3/h)

Energy Efficiency η

Exergy Efficiency ηII



www.manaraa.com

67 
  

Table 4-5: Efficiencies at different flow rates 

Flow rate 

(m
3
/h) 

Energy Efficiency 

 (η) 

Exergy Efficiency 

 (ηII) 

110 74.33 71.28 

131 76.40 73.20 

151 79.31 75.96 

 

Figure 4-14 shows the energy efficiency and exergy efficiency for three different flow 

rates. It is found that energy and exergy efficiencies vary between 74.33-79.31% and 71.28-

75.96%, respectively, increases with the flow rate. Energy efficiency was found higher than the 

exergy efficiency for different flow rate. Energy efficiency was calculated based on the total 

quantity of energy transferred throughout the system and could be maximized by providing 

sufficient insulation, consequently minimizing the heat loss. On the other hand, the exergy 

efficiency quantified only useful amount of energy [121]. To increase the exergy efficiency, it is 

necessary to prevent the destruction of exergy during discharging. The way to accomplish this 

target is by decreasing the discharging time. 
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CHAPTER 5 

EXPERIMENTAL INVESTIGATION OF DIFFERENT SIZE SPHERICAL CAPSULES  

This chapter presents the investigation of constrained melting and solidification of 

sodium nitrate PCM inside spherical capsules. The effects of melting and solidification were 

observed for various diameter capsules (25.4, 50.8 and 76.2 mm) inside an electrically heated 

furnace. In each capsule, three thermocouples were installed vertically at three equidistant 

positions in the capsule. It is mentioned in chapter four that decreasing the discharging time is 

necessary to reduce the destruction of exergy. Shorter discharging time could be achieved by 

enhancing the heat transfer rate during solidification. In this investigation, 5 wt% and 7 wt% of 

graphene were used as the highly conductive dispersion particle (as graphene has higher specific 

surface area and less density than NaNO3 in both solid and liquid state. See table 2-2) to enhance 

the heat transfer rate during solidification, and compared with pure PCM capsules. The main 

objectives of the experiment are as follows: 

a) To observe the temperature profile of different size capsules during melting and 

solidification. 

b) Measure the melting and solidification time for different size capsules 

c) Determination of enhancement effect by adding 5 wt% and 7wt% of graphene. 

5.1 Experimental Setup and Procedure 

5.1.1 Materials 

Polytetrafluproethylene (PTFE) films, graphene (60 nm) and sodium nitrate (NaNO3) 

were purchased from McMaster-Carr,USA, Graphene Supermarket, USA, and Sigma Aldrich, 
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USA respectively. The K-type thermocouples and data acquisition system were obtained from 

Omega, CT, USA and National Instrument, Texas, USA respectively. To observe the melting 

and solidification of the spherical capsules, a multi-stage programmable Vulcan bench top 

furnace was procured from DENTSPLY, USA. 

5.1.2 Characterization  

The DSC/DTA/TGA analyses were carried out using the SDT-Q 600 by TA instrument. 

This machine can simultaneously perform differential scanning calorimetry and 

thermogravimetric analysis. Heat flow, temperature and weight accuracy of this device are ±2% 

(based on metal melting standards), ±1
o
C (based on metal melting standards) and ±1%, 

respectively. All the TG analyses were performed at a ramp rate of 10
o
C/min under an inert 

(Argon) atmosphere. The thermal diffusivity analysis was performed by XFA 300/600 Linseis 

diffusivity measurement apparatus and the accuracy of this device was ±6%. 

5.1.3 Encapsulation of NaNO3 Capsules 

Sodium nitrate salts were grounded very well to make fine power. This powder was then 

pressed in a hydraulic press (inside specific die) at 980 N of force to form hemispherical pellets 

of 25.4, 50.8, and 76.2 mm diameter. The salt pellets were coated with thin stretchable PTFE 

films . The coated pellets were again pressed in the hydraulic press at 980 N of force. The 

thickness of all the capsules was maintained 0.052±0.005 cm. These capsules were then heated 

to 326
o
C and annealed for one hour, two hours and three hours for 25.4, 50.8, and 76.2 mm 

diameter capsules respectively. Also, two capsules of 25.4 mm diameter were made with 5 wt% 

and 7 wt% of graphene with NaNO3 by using cold compression method. In cold compression 

method, the salt and the dispersion particles were mixed and compressed at room temperature to 

form spherical capsules. 
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5.1.4 Experimental Setup 

To observe the melting and solidification profile inside the capsule three thermocouples 

were installed. Initially, the capsules were drilled, and three thermocouples were placed 

vertically at three equidistant positions inside the capsules. Thermocouples were wrapped with 

PTFE tape to hold these in a steady position. Table 5-1 represents the positions of the 

thermocouples inside the capsule. Then the capsules were re-coated from the top to prevent the 

leakage of the PCM in molten state. 

Table 5-1: Vertical position of the thermocouples inside the capsule 

Case  Capsule size Top position (P1) 

(cm) 

Center position (P2) 

(cm) 

Bottom position (P3) 

(cm) 

Case 1 25.4 cm capsule 6.35 12.7 19.05 

Case 2 50.8 cm capsule 12.6 25.2 37.8 

Case 3 76.2 cm capsule 19.05 38.1 57.15 

*All positions were measured from the top (after the shell material) 

 

A schematic of the experimental setup is illustrated in figure 5-1. It contained a polymer 

capsule, a programmable furnace, five calibrated K-type thermocouples (nominal diameter 0.25 

mm), data acquisition system, and a data logger system. The polymer-coated capsule was placed 

at the center of the furnace, three thermocouples were installed inside the capsule (figure 5-2, 

figure 5-3), one thermocouple was placed on the right side of the capsule and another at the top 

of the capsule. Thermocouples were allocated from the top of the furnace and properly insulated 

to reduce the heat losses. Error associated with these thermocouples was ± 2.2°C or 0.75% of the 

maximum temperature. The thermocouples were attached to a data acquisition system (by 

National Instrument, NI cDAQ-9178). Temperature data were collected and recorded by 

Labview Express at one-minute intervals. The furnace was cycled in the temperature range of 

286
o
C to 326

o
C. In the cases 1, 2 and 3, capsules had 17.40±0.10 gm, 114.24±0.16 gm and 
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354.60±0.18 gm of NaNO3 respectively. The coating material was flexible to accommodate the 

expansion of the PCM in the liquid state. The heat transfer from the furnace to the capsule was 

transferred via two parallel paths. One was convective heat transfer from the furnace air to the 

surface of the capsule. The second method was radiative heat transfer from the resistance heater 

to the capsule surface. 

 

Figure 5-1: Experimental setup for different size capsules 

 

Figure 5-2: Position of the thermocouple in different size capsules (polymer coated) 
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Figure 5-3: Three K-type thermocouples inside the capsule 

 

5.1.5 Experimental Procedure 

After placing the capsule inside the furnace and connecting the thermocouples with the 

data logger, the lab view program was started to collect the data at one-minute intervals. The 

furnace was programmed for two consecutive cycles. The steps of the two consecutive cycles for 

three cases are stated in table 5-2. At the 1
st
 step, the furnace was set at 286

 o
C for two hours to 

stabilize the spherical capsule temperature at 286
o
C for all cases and ensured that all the 

thermocouples were at 286 
o
C. For the 2

nd
 step (1

st
 melting step) the furnace was ramped up to 

326
o
C at a ramp rate of 40 

o
C/min and maintained at this temperature for two hours, four hours 

and six hours for cases 1,2 and 3 respectively, to ensure that all the thermocouples reach the 

desired temperature. On the 3
rd

 step (1
st
 solidification step), the furnace was programmed to 

cooled down to 286
o
C at the same ramp rate as before and maintained at this temperature for 

two, five and seven hours for the cases 1,2 and 3 respectively. Steps two and three were repeated 

one more time to complete two consecutive cycles. This two-cycle process was repeated three 

more times to confirm the uncertainty of the measured data. The uncertainty of the temperature 
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measurement experiment was approximately ±3.54%. For the 5 wt% and 7 wt% of graphene 

capsules, the same methodology was followed in case 1. 

Table 5-2: Furnace time steps for different cases 

Case  Melting Step 

(hr) 

Solidification Step 

(hr) 

Case 1 2 2 

Case 2 4 5 

Case 3 6 7 

 

5.1.6 Uncertainty Analysis 

TGA, diffusivity and temperature measurements were conducted several times to observe 

the repeatability of the measured data. The Root-sum-square method was employed to evaluate 

the uncertainty of the measurements [115, 116] with a 95% confidence level.  

 Uc = √𝜎𝑟𝑎𝑛𝑑𝑜𝑚
2 + 𝜎𝑠𝑦𝑠𝑡𝑒𝑚𝑡𝑖𝑐

2  (5-1) 

where, Uc, σrandom and σsystematic are the combined standard uncertainties for the 

measurements, random error, and systematic error, respectively. 

5.2 Results and Discussion 

5.2.1 Temperature Profile of Different Size Capsules 

In the presence of a thermocouple, the solid PCM clasps itself to the thermocouple 

preventing the solid PCM from sinking/rising to the bottom/top to the capsule due to density 

difference of two phases of the PCM. This approach is called constrained melting. Tan et al. 

[103] visually observed this phenomenon by melting of n- Octadecane in a spherical capsule 

presented in figure 5-4. It is observed that the melting of the PCM was concentric, and last point 

of melting was almost two thirds of the distance from the top. Initially, conduction was the 

dominant process. It created a constant liquid layer near the inner wall of the capsule. With the 
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time lapse, convective heat transfer became dominant and created an upward motion of the 

molten liquid along the capsule wall and downward motion of the colder liquid. Buoyancy-

driven convection was the reason for faster melting in the top portion than the bottom [98, 104]. 

Similar phenomena were observed in the melting of different size capsules in this experiment.  

 

Figure 5-4: Constrained melting of n-Octadecane in spherical capsule [103](Permission is in 

Appendix C) 
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(b) (a) 

(b) (a) 

 
 

 

Figure 5-5: Melting (a) and solidification (b) profile of 25.4 mm capsule 

 

 
 

 

Figure 5-6: Melting (a) and solidification (b) profile of 50.8 mm capsule 

 

The heating of the capsule was divided into three segments. Segment one is the sensible 

heat absorption zone by the solid PCMs. Segment two is the latent heat absorption zone at a 

constant temperature, and finally the segment three is the sensible heat absorption by the liquid 
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(b) (a) 

(a) (b) 

PCM. Figures 5-5(a), 5-6 (a), 5-7 (a) show that the top thermocouple at P1 position observed the 

quickest melting, after that P2 melted. The thermocouple at P3 position observed the last melting 

as it was positioned at two-thirds the distance from the top.  

 

 

Figure 5-7: Melting (a) and solidification (b) profile of 76.2 mm capsule 

 

 

Figure 5-8: Comparison of the melting (a) and solidification (b) profile of different size capsules 

at center thermocouple 
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Solidification of the spherical capsule took place from the outside-in and it thus 

developed a high resistance solid layer at the inner wall of the capsule. Therefore, solidification 

is a conduction-dominated process, which is slower. Figures 5-5(b), 5-6 (b), 5-7 (b) show that the 

top thermocouple observed the solidification much more quicker than the center and the bottom 

thermocouples. Center and the bottom thermocouple observed solidification at a close-by 

interval. It is evident that because of the constrained solidification, the last point of solidification 

shifted below the center point. Figure 5-8 represents the melting and solidification profiles of 

different size capsules at the center thermocouple. It shows that cases 2 and 3 took 271% and 

342% more time to melt than case 1, respectively. During solidification, cases 2 and 3 took 

223% and 363% more time to solidify than case 1, respectively. Melting and solidification times 

for three different cases are tabulated in table 5-3. 

Table 5-3: Melting and solidification time for three different size capsules 

Case  Top position  

Melting/Solidification 

(Minutes) 

Center position  

Melting/Solidification 

(Minutes) 

Bottom position  

Melting/Solidification 

(Minutes) 

Case 1(25.4 mm) 9/13 14/30 18/42 

Case 2 (50.8 mm) 32/42 51/97 71/137 

Case 3(76.2 mm) 38/45 62/139 94/194 

* Uncertainty associated with this measurement is ±7%. 

 

5.2.2 Heat Transfer Enhancement with Dispersed Graphene  

Graphene has higher thermal conductivity and higher specific surface area with lower 

density than NaNO3. Initially, capsules were made of low concentration graphene with NaNO3 

PCM. It was found that with low concentration, these particles tended to settle down on the 

periphery of the capsule wall rather than dispersing throughout the capsule. At the same time, 

melting time of the capsules was increased as these obstructed the natural convection of the PCM 
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(b) (a) 

at liquid state. Later, 5 wt% and 7 wt% of graphene was employed to complete the investigation. 

Figure 5-9 shows the distribution of the 5wt% of graphene in NaNO3 capsule after 30 thermal 

cycles. 

 

Figure 5-9: 5 wt% of graphene dispersed in NaNO3 capsule 

 

Figure 5-10: Comparison of the melting (a) and solidification (b) profile of 25.4 mm capsule 

filled with pure NaNO3 / composites 
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Figure 5-10 shows the transient temperature profile of pure NaNO3 and two other 

composites. In all cases, melting in the capsule was divided into three segments. Segment one is 

the sensible heat absorption zone by the solid PCMs. Segment two is the latent heat absorption 

zone at a constant temperature, and finally segment three is the sensible heat absorption by the 

liquid PCM. It is observed from the figure 5-10(a) that with both 5 wt% and 7 wt% of graphene, 

PCM completed the solid phase sensible heat absorption zone more sharply than the pure NaNO3 

and reached the phase change process earlier than the pure NaNO3. 7 wt% of graphene finished 

the melting process 13% quicker than the pure NaNO3 capsule. Even though, 5 wt% of graphene 

started melting early; it took almost the same time to melt as pure NaNO3 capsule. This is 

probably because the 5 wt% of graphene was hindering the natural convection process inside the 

capsule, and the conductive heat transfer was not strong enough to reduce the melting time. Even 

though 7 wt% of graphene would also obstruct the convection process inside the capsule; the 

increased conductive heat transfer due to the highly conductive graphene was more than enough 

to overcome it. After finishing the melting zone, composites reached the final temperature more 

sharply than the pure PCM did. 

Figure 5-10 (b) shows the solidification profile of the composites and the pure PCM. 

During solidification stage, both 5 wt% and 7 wt% of graphene composites exhibited better 

performance than melting process as solidification is a conduction dominated process. 5 wt% and 

7 wt% of graphene composites reduced the solidification time by 41% and 50% respectively and 

completed the whole solidification cycle approximately 30 minutes before the pure NaNO3. 

With the increasing mass fraction of the graphene, the storage capacity of the capsules 

was decreased even though the heat transfer rate increased. Table 5-4 presents the 

thermophysical properties of pure NaNO3 and different mass fraction of the composite. It is 
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observed that phase change temperature was slightly higher than that of pure NaNO3 that was 

also observed in figure 5-10. With the increasing mass fraction of the graphene particles, the 

latent heat of fusion decreased.  

Table 5-4: Thermophysical property of NaNO3/composite 

Material Melting point 

(
o
C) 

Latent Heat of Fusion 

(kJ/kg) 

NaNO3 303.22 170.8±1.2 

5 wt% of Graphene with NaNO3 304.35 161.4±2.5 

7 wt% of Graphene with NaNO3 304.84 157.8±3.5 

 

Figure 5-11 presents the thermal diffusivity of pure NaNO3 and different mass fractions 

of the composite at different temperatures. Thermal diffusivity indicates the reaction time of a 

material with the change in temperature. As expected from the previous experiments, 7 wt% 

concentration has higher thermal diffusivity value than the 5 wt% concentration composite and 

the pure PCM. The uncertainty of this analysis was ± 6%. 

 
Figure 5-11: Thermal diffusivity of pure NaNO3 and different mass fraction of the composite at 

different temperature.  
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CHAPTER 6: 

PROPOSED MANUFACTURING STEPS 

This Chapter discusses manufacturing process steps of the encapsulated capsules for the 

latent heat storage system.  

6.1 Manufacturing Process 

Manufacturing process is the conversion of raw material to finished products. Companies 

in the recent past have outsourced their production process to third parties and focused on 

product development [122]. However, having the manufacturing process in-house adds not only 

the physical value of the machinery, but also the intellectual capital. The knowledge of the 

production process is difficult to reproduce by competitors giving the company a distinct 

advantage.  

The main benefits of manufacturing are given by Duarte [123]. Having manufacturing 

capability can significantly reduce the time required to get the final product to market. It can also 

hasten the ramp-up period so that full production capacity is reached faster. Manufacturing 

facility allows for customizations to the product without compromising on the quality. Finally, it 

leads to a stronger proprietary position as the production process can be kept a secret. All of 

these contribute to more profits for the firm and less reliance on third-party manufacturers.  

Having improved production capability is a result of process development projects and 

production experience. Process development successfully identifies bottlenecks and difficult 

tasks in the production line. This is called learning before doing. Production experience refers to 

the time required for workers to get familiar with the process and get information on problems to 
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find opportunities to improve. This is called learning by doing. Thus, learning before doing and 

learning by doing together increase the knowledge base, which leads to improved production. 

This is how innovation takes place. 

6.1.1 Steps Discussion 

Manufacturing steps of the encapsulated capsules could be divided in four different 

sections: PCM preparation, polymer coating, metal coating and packaging. In the PCM 

preparation section, raw materials are collected from the vendor. After the raw materials pass the 

quality check, PCM powders are added to the Homogenizer with a constantly rotating screw and 

a mesh at the bottom to enable uniform sized particle distribution. The PCM particles fall 

through the bottom of the homogenizer to a conveyor belt that carries the PCM to the rotary 

press. There are pre-prepared dies to press the PCM into shape. Polymer coating is applied in the 

next stage, which can be done by hand-wrapping. The encapsulated PCM then goes through an 

IR heater for post-coating thermal treatment. A series of sub-steps follow to achieve electroless 

coating. In the subsequent sub-steps, electroplating of the encapsulated PCM pellets takes place. 

Finally, the finished product is obtained. Last step of the whole process is packaging and 

transportation of the capsules to the plants. 

 

Figure 6-1: Production line of the encapsulated capsule 
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There are several important parameters to be maintained to ensure quality control. These 

 are:  

a) monitoring the flow through the feeder,  

b) particle size coming out of the homogenizer,  

c) size, strength and weight loss of the pellets, and finally  

d) thermal cycling of the PCM 

List of some vendors are provided for some components:  

a) Powder grinding machine: (Amisy Machinery, China; Kemutec, PA,USA) 

b) Conveyor Belt: (ASGCO, PA, USA; Ace Belting company, NJ, USA) 

c) Polymer: (Dupont, NJ, USA; Lin'an Linfeng Fluorine Plastics Co., Ltd., China) 

d) Electroless solution: (Macdermid Inc., USA; Transene Company Inc.,USA) 

e) Electroplating solution: (Allied Plating, USA) 

  



www.manaraa.com

84 
  

 

 

 

 

 

CHAPTER 7: 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

7.1 Summary and Conclusion for Chapter 3 

An innovative PCM encapsulation technique has been developed that does not require a 

sacrificial layer to accommodate the volumetric expansion of the PCM on melting. From this 

research and development, PTFE and FEP were found to be appropriate coating materials for 

encapsulating nitrate based PCMs for the temperature range of 120-350
o
C. A non-vacuum based 

technique was developed to coat a metal on the polymer layer that provides sufficient strength to 

stack the capsules in a thermal storage tank. The developed process reduces the chance of metal 

corrosion due to molten salts as there is a polymer layer in-between the PCM and the metal 

coating. The flexible coating over the capsule has allowed the use of a very thin coating layer 

that has significantly increased the PCM-to-coating ratio. In addition, the PCM in the macro-

capsules melts and solidifies in a short period of time to satisfy the need for a quick response 

time for generating power on demand. Thermal cycling tests have shown that the encapsulated 

nitrate based materials have excellent thermal and chemical stability even after more than 2200 

thermal cycles. Also, the capsules were tested in oil and molten salt environment and passed 

1000 thermal cycles. Their thermophysical properties and weight change analysis suggested the 

stability of the capsules in three different environments. Based on these results, it can be 

concluded that the developed materials have good potential for use in LHS systems in renewable 

energy and conventional power plants.  
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7.2 Summary and Conclusion for Chapter 4 

An experimental investigation on a high-temperature packed-bed LHTS system that 

contained macroencapsulated spherical capsules as the storage material was conducted. Sodium 

nitrate was used as the PCM and air as the heat transfer fluid. To understand the temperature 

profile and the pressure drop during charging and discharging of the system, cyclic experiments 

were conducted between 286
o
C and 326

o
C and at three different flow rates. It was observed from 

the experiment that when the volumetric flow rate increased from 110 to 131 m
3
/h, the charging 

time reduced from 198 minutes to 180 minutes, which was approximately 9% improvement in 

the charging time. On the other hand, when the flow rate of HTF was changed from 131 to 

151m
3
/h, the charging time reduced from 180 to 169 minutes, approximately 6% improvement in 

the charging time. In the case of discharging, when the flow rate was changed from 110 to 131 

m
3
/h and 131 to 151 m

3
/h, the discharge time reduced from 222 to 204 minutes and 204 to 198 

minutes, respectively. The improvement of discharging time was approximately 8% and 3% for 

the aforementioned cases, respectively. Furthermore, energy efficiency and exergy efficiencies 

were calculated. It was found from the investigation that as the flow rate increased, the 

efficiencies increased. Increasing flow rate enhanced the heat transfer rate and shortened the 

charging and discharging time. In general, the experimental results did not show any surprises. 

However, because of a general lack of experimental studies of latent heat TES systems in the 

literature, these results will prove to be valuable for the system designers and the researchers 

conducting modeling simulation of the systems. 

7.3 Summary and Conclusion for Chapter 5 

In this investigation, the main objective was to observe the transient temperature response 

of NaNO3 PCM inside various sizes of capsules during melting and solidification. A constrained 
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experimental setup was designed to fulfill the goal. It showed that during melting, cases two and 

three took 271% and 342% more time to melt than case one, respectively. During solidification, 

cases two and three took 223% and 363% more time to solidify than case one, respectively. It 

was also observed that both constrained melting and solidification process was concentrically 

inward and which was 25% below the center point. To improve the heat transfer rate in the 

encapsulated NaNO3 PCM, various concentrations of graphene were dispersed. It was observed 

that low concentration of the graphene had a tendency to settle down on the periphery of the 

capsule. 5% and 7% of graphene exhibited good performance as these two concentrations 

dispersed throughout the capsule. Also, 5 wt% and 7 wt% of graphene composites reduced the 

solidification time by 41% and 50% respectively and completed the whole solidification cycle 

approximately 30 minutes before the pure NaNO3. Thermophysical properties of different 

concentrations were measured and showed good stability after 30 thermal cycles. 

7.4 Summary and Conclusion for Chapter 6 

This chapter discussed probable steps involved with the production process of the 

capsules. It also discussed several important parameters to ensure quality control of the produced 

capsules and list of some vendors to buy different materials and machines. 

7.5 Future Recommendations 

a) Polymer and metal based encapsulation technique was developed for nitrate based 

PCMs and their eutectics. Several other combinations of PCM hydrates, chloride and 

nitrate based eutectics could be employed. 

b) High temperature PCM encapsulation could be the next goal. 

c) Mechanical strength of the capsule at molten state and solid state of PCM could be a 

great inclusion in the study. 
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d) Experimental latent heat packed-bed storage was constructed with single PCM 

capsules. This packed-bed storage could be implemented with various PCMs and 

different size of capsules. 

e) Different HTF can be employed in the packed-bed thermal energy storage like oil and 

molten salt to test the encapsulated capsules. 
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Appendix A: Nomenclature 

 

PCM  Phase Change Material 

TES  Thermal Energy Storage 

LHTES Latent Heat Thermal Energy Storage 

SHTES Sensible Heat Thermal Energy Storage 

E  Total Energy (kJ) 

Q  The amount of Heat Released or Absorbed (kJ) 

m  The Mass of Storage Material (kg) 

�̇�  Mass Flow Rate (kg/min) 

Csp  Specific Heat Capacity of Material in Solid State (kJ kg
-1

K
-1

)  

Clp  Specific Heat Capacity of Material in Liquid State (kJ kg
-1

K
-1

)  

T  Temperature (
o
C) 

Tm  Melting Temperatures of Storage Material (°C) 

Ti  Initial Temperatures of Storage (°C) 

Tf  Final Temperatures of Storage (°C) 

To  Ambient Temperature (°C) 

L  Latent Heat of Fusion (kJ/kg) 

PTFE   Polytetrafluoroethylene.  

FEP   Fluorinated Ethylene Propylene.   

NaNO3   Sodium Nitrate.  

PVDF   Polyvinylidene Fluoride.  

LiNO3   Lithium Nitrate.  

KNO3    Potassium Nitrate 

MgCl2   Magnesium Chloride 

LiCl   Lithium Chloride 

PIF    Polyimide Film. 

PI-84    Polyimide 84. 

FTIR    Fourier Transform Infrared Spectroscopy.  

TGA  Thermogravimetric Analysis 

Uc   Combined Standard Uncertainty 

Dp   Capsule Diameter (m) 

l   Length of the Bed (m)  

ΔP    Pressure Drop (Pa) 

Rep   Particle Reynolds Number 

U   Superficial Velocity (m/s) 

h    Height (cm) 

r    Radius (cm) 

 

A.1 Greek Symbols 

 

σrandom   Random Error 

σsystematic  Systematic Error 

ԑ    Void Fraction 

ρ    Density (kg/m
3
) 

μ    Dynamic Viscosity (N.s./m
2
)  
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η   Energy Efficiency (Dimensionless) 

ηII   Exergy Efficiency (Dimensionless) 

α   Thermal diffusivity (mm
2
/sec) 

 

A.2 Subscripts 

 

i    Initial 

f   Final 

sc   Single Capsule 

s   Solid 

l   Liquid 

m   Melting 

pcm  Phase change material 

poly  Polymer 
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Appendix B. Experimental Processes and Parts 

B.1 HTF Specification 

Specification of the HTF used in the “capsules in the oil” test is given below. 
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B.2 Electroless and Electroplating Materials and Process 

 
Figure B-1: Electroless plating in ultra sonicator 

 

 
Figure B-2: Electroplating setup  
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Figure B-3: Flow chart of electroless plating process 

 

 

 
Figure B-4: Schematic of electroplating process 

 

    
Figure B-5: SEM image showing the bond between PTFE and plated metal layer  
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Product specification of electroless nickel is given below. 
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Product specification of electroplating solution is given below. 
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B.3 Supplemental Information on the LHS Packed-Bed Prototype System 

 
Figure B-6: Different parts used in packed-bed setup 

 

 
Figure B-7: Polymer encapsulated PCM 
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Figure B-8: Randomly packed capsules inside the packed-bed 

 

 
Figure B-9: Packed-bed setup without insulation  
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Appendix C. Copyright Permissions 

 

Below is permission for the use of figure 2-3. 
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Below is permission for the use of material in chapter 3. 

 

 
  



www.manaraa.com

110 
  

Below is permission for the use of material in chapter 4. 
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Below is permission for the use of figure 5-4. 

 

 

 



www.manaraa.com

  

 

 

 

 

 

ABOUT THE AUTHOR 

 

Tanvir E Alam was born in Dhaka, Bangladesh on April 14, 1986. He completed his 

bachelor’s degree in 2009 from Bangladesh University of Engineering and Technology. After 

receiving his bachelor’s in Mechanical Engineering, he moved on to complete his higher 

education at University of South Florida. There, he completed his master’s degree with a 

specialization in Material Science and his research focus was based on removing organic 

material and heavy metal from water by using graphene/metal oxide nanoparticles. In the 

summer of 2012, he joined the Clean Energy Research Center at the University of South Florida 

and started his doctoral program in Mechanical Engineering. In his PhD, he developed 

encapsulation techniques of high temperature phase change materials (PCMs) with polymer and 

metal coating for thermal energy storage system and constructed a packed-bed latent heat storage 

of ~1KWhth. 

Tanvir E Alam and Farhana Rahman were married on July 4, 2013 in Dhaka, 

Bangladesh.  

 


	University of South Florida
	Scholar Commons
	January 2015

	Experimental Investigation of Encapsulated Phase Change Materials for Thermal Energy Storage
	Tanvir E. Alam
	Scholar Commons Citation


	tmp.1442348284.pdf.XBlIj

